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Let A be a Banach x-algebra satisfying the condition: there
exists a positive constant « such that

alle*||[|zf < |e*|

for every « in A. The problem to realize such a Banach x-algebra as
a C*-algebra has been left to be solved after I. Kaplansky [3] asked
whether or not every C-symmetric Banach x-algebra is symmetric. In
the case when A is commutative, R. Arens [1] had proven that it is a
B*-algebra under an equivalent norm, and then B. Yood [8] gave a
partial answer to this problem by showing that a Banach x-algebra
with the above condition is a B*-algebra under an equivalent norm if
a>c (c; the unique real root of the equation 4£*—2#*4-t—1=0).

The purpose of this note is to inform that this problem has been

solved in the affirmative, and is to give a brief account of the proof.
Our result is the following.

Theorem. Let A be a Banach x-algebra whose norm satisfies the

condition a||x* ||| x| < ||x*x||. Then itis homeomorphic and x-isomorphic
to a C*-algebra.

By a B*-algebra, we shall mean a Banach x-algebra with the
condition ||z*x| =|x|?. At the present time, it is well known that a

B*-algebra is isometrically x-isomorphic to a C*-algebra, a uniformly
closed x-algebra of operators on Hilbert space.

Throughout this paper we shall consider a (complex) Banach
x-algebra with unit e (the case without unit will be mentioned at the
final step). Here we present a concise proof of the theorem which
proceeds by stages. In the course of the representation of B*-algebras
(see the theorem of Fukamiya and Kaplansky [7; Theorem 4.8. 11], T.
Ono [6] and J. Glimm-R. V. Kadison [2]), the problem one discussed
for a long time was to extend the local C*-property to the global one.
Concerning our problem we are in the same situation as the case of
B*-algebras because Arens [1] tells us that our Banach x-algebras
provide the local C*-property. To clarify the essence of the proof we
introduce a class of Banach x-algebras as follows. A Banach x-algebra
A is said to be locally equivalent to a C*-algebra if every maximal

* This work was done while the author was offering a Functional Analysis
Seminar at the University of British Columbia in 1969.
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commutative x-subalgebra of A is a B*-algebra under an equivalent
norm. For such a Banach x-algebra A, first of all, we should observe
the following facts.

(i) The (complex) closed subalgebra A(k) of A generated by a
self-adjoint element % and e is a B*-algebra under an equivalent norm,
that is, it is homeomorphic and x-isomorphic to the algebra of all
continuous functions on a compact Hausdorff space.

(ii) The spectrum of % in A coincides with that of k in A(h).
Consequently, we have

(iii) Every self-adjoint element in A has real spectrum.

If a Banach x-algebra A satisfies the norm condition stated in the
theorem, then it follows from [1; Theorem 1] that A is locally equivalent
to a C*-algebra in our sense (note that every maximal commutative
x-subalgebra of A is automatically closed).

In what follows, A means a Banach x-algebra which is locally
equivalent to a C*-algebra. We denote by o(x) the spectrum of an
element x; y(x) the spectral radius of «; S the set of all self-adjoint
elements in A. An element z ¢ S is said to be positive if o(h) consists
of non-negative scalars, and is denoted by 2>0. By a state p of A,
we understand a linear functional of A such that po(h)>0 for every
h>0 and p(e)=1. The first step is to prove:

(1) The following conditions are equivalent in A.

(1.1) The sum of positive elements is positive.

(1.2) For each element x, x*x is positive.

(1.3) Forany h,keS, y(h+E)<y(R)+7k).

(1.4) Let heS and 2eo(h). Then there exists a state p of A
such that p(h)=2.

From this it turns out that a key to the problem is to prove that
one of the conditions (1.1)-(1.4) holds for A. Actually we can prove:

(2) A satisfies the condition (1.1).

By (i), an element in A is positive if and only if it is expressible
as the square of an element in S. Therefore, to prove (2) we may
show that for a, b in S, a* + b? is positive; that is, a* + b? + Ae is
invertible for any 2>0. Following the procedure as in [5; IX, p. 302]
this can be reduced to show that for any invertible element x, x*x is
positive. Consider the algebra A4,=—A(x*x) generated by z*x and e.
Then A, is x-isomorphic to the algebra C(2) of all continuous functions
on the compact Hausdorff space 2 (the space of all multiplicative linear
functionals ¢ on A, with ¢(e)=1). Having noticed that z*x has the
inverse in A,, we define

2,={p e 2| (@*x) () >0};
2,={¢ € 2|(x*x) () <0},
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where (x*x)” is the image of x*x under the x-isomorphism of A, onto
C(2). Then 2=0,U 2, and further 2,, 2, are open and closed in 2.
Let us denote by p the element in A, corresponding to the characteristic
function of 2,. Obviously p is a projection (self-adjoint and idempotent)
commuting with x*x. Here x*x(e—p)>0 and x*xp<0. Thus the
proof will complete by showing p=0. Suppose p=+0, i.e., 2,#3.
Then, since £, is compact, there is a ¢, € £, such that
sup (pa*ap)"(p) = (pa*zp) (¢, <0.

¢E Q2
This means that there is a constant 3<0 such that pa*zp < Bp, so that
we may assume without loss of generality that px*xp< —p holds.
Note that p(x*x)~'p=(2*x)'p <0 and find a self-adjoint element 7 in 4,
such that (x*x)"'p=—h’. Let y=ah. Then yp=y and y*y=—op.
Define z=y—py and observe that 2°=0. Thus it follows from (i) that
2*2>0 (see [6; Lemma 1.1]). On the other hand, a direct computation
shows z*z=—p—y*py and hence (py)*(py)=y*py<—p. Here we
should notice that w=py commutes with p. Clearly the set B of all
elements which commute with p forms a closed %-subalgebra of 4, and
p belongs to the center of B. Therefore, restricting our attention to
pBp, it is possible to assume that w*w< —e. In this case, since
(w*w)~! exists and it is negative, there is an element k ¢ S commuting
with w*w such that (w*w)'= —Fk?. Let u=wk. Then we have
u*u= —e, uu*= —q(q; a projection).

Suppose ¢'=e—q=+0. Put v=uq’ and observe that ¢’u=0. Then ¢’v=0,
vq¢’=v and v*=0. In this case, as mentioned above, v*v>0. But
v*y=qu*uq’= —q’ <0, which is a contradiction.? Thus g=¢ and so «
is normal. Therefore u*u= —e is impossible by our assumption. This
completes the proof of (2).

After having established the proposition (2), there is no difficulty
to obtain a faithful x-representation of A into the algebra of operators
on Hilbert space. What we need is only to follow the standard
treatment in the representation of Banach x-algebras (cf. [6]).

B.1) S isclosed in A.

(3.2) The involution *is continuous in A.

(8.3) A state of A is bounded.

Now, according to (1), (2) and (3), we construct a x-representation
n, of A on a Hilbert space 7,, associated with each state p of A, and
consider the direct sum 7= of 7#,. Then, by (1.4), « is faithful.

(4) A admits a faithful x-representation into the algebra _L(H)

1) This argument has been inspired by [3; Lemma 4.2, (c)]l. Indeed, o is
minimal in the closed subalgebra generated by polynomials p(u,u*). The structure
The structure theorem of isometries on Hilbert space suggests us this fact. See
also [4; Lemma 4].
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of all operators on a Hilbert space H.

Let us return to a Banach x-algebra A in Theorem. By (4), it is
x-isomorphic to a x-subalgebra w(4) of L(H), and furthermore the
norm condition yields a|k||<y(k) for every heS([1]). Therefore
a|lh| L ||rW)|| < ||k|| for every he S. This implies that 7(S) is closed
in _L(H) and hence w(A) is closed in _L(H). That is, w(4) is a C*-algebra
and r is a homeomorphism.

In the case when a Banach x-algebra in Theorem has no unit, it
can be isometrically embedded into a Banach x-algebra with unit which
satisfies the norm condition as in the theorem ([1; Lemma 4]).

Acknowledgements. Professor B. Yood has informed me of the
following fact: S. Shirai and J.W.M. Ford recently gave an affirm-
ative answer to the problem of I. Kaplansky stated in the introduc-
tion. Then, their result contains the statement (2) and so our theorem
also follows from this with the aid of (1), (8) and (4).
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