153. On Mixed Problems for First Order Hyperbolic Systems with Constant Coefficients

By Takashi Sadamatsu
(Comm. by Kinjirô Kunugi, m. J. A., Oct. 13, 1969)

1. Introduction. Mixed problems for linear hyperbolic equations with constant coefficients in a quarter space has been treated by S. Agmon [1], R. Hersh [2] and L. Sarason [6].

In this note, we consider the mixed problem for first order hyperbolic systems with the principal part

$$
\left\{\begin{array}{l}
L[u] \equiv \frac{\partial}{\partial t} u+A \frac{\partial}{\partial x} u+\sum_{j=1}^{n} B_{j} \frac{\partial}{\partial y_{j}} u=f(t ; x, y) \tag{1.1}\\
u(0 ; x, y)=0 \\
P u(t ; 0, y)=0
\end{array}\right.
$$

in the quarter space $\left\{(t ; x, y) ; t>0, x>0, y \in R^{n}\right\}$, where u is a N vector, $A, B_{j}(j=1,2, \cdots, n) N \times N$-constant matrices and $P m \times N$ constant matrix of rank m. A is supposed to be non-singular.

Our argument is based on Wiener-Hopf's method. After Laplace transformation in t and Fourier transformation in y, the problem (1.1) is translated into the following equation

$$
\left\{\begin{array}{l}
\left(A \frac{d}{d x}+\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right) \hat{u}(\tau ; x, \eta)=\hat{f}(\tau ; x, \eta) \tag{1.2}\\
P \hat{u}(\tau ; 0, \eta)=0
\end{array}\right.
$$

where $\hat{u}(\tau ; x, \eta)$ denotes the Fourier-Laplace image of $u(t ; x, y)$. Using a compensating function $\hat{g}(\tau ; x, \eta)$ which shall be constructed later and setting $u=v+w$, we decompose the problem (1.2) to two problems

$$
\begin{equation*}
\left(A \frac{d}{d x}+\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right) \hat{v}(\tau ; x, \eta)=\hat{f}(\tau ; x, \eta)+\hat{g}(\tau ; x, \eta) \tag{1.3}
\end{equation*}
$$

in $x \in R^{1}$ and

$$
\left\{\begin{array}{l}
\left(\frac{d}{d x}+M(\tau, \eta)\right) \hat{w}(\tau ; x, \eta)=0 \tag{1.4}\\
P \hat{w}(\tau ; 0, \eta)=-P \hat{v}(\tau ; 0, \eta)
\end{array}\right.
$$

where $M(\tau, \eta)=A^{-1}\left(\tau I+i \sum_{j=1}^{n} \eta_{j} B_{j}\right)$. Thus we are to treat the problems (1.3) and (1.4).
2. Assumptions and result. Condition I. The operator L is hyperbolic in the following sense : 1) the matrix $\xi A+\eta B(\eta B$ stands for $\left.\sum_{j=1}^{n} \eta_{j} B_{j}\right)$ has only real eigenvalues for any real $\left.(\xi, \eta), 2\right)$ the matrix
$\xi A+\eta B$ is diagonalizable and the multiplicities of eigenvalues are constant for any real $(\xi, \eta) \neq(0,0)$, i.e. we have

$$
\begin{equation*}
\operatorname{det}(\tau I+i \xi A+i \eta B)=\prod_{j=1}^{s}\left(\tau-i \lambda_{j}(\xi, \eta)\right)^{p_{j}} \tag{2.1}
\end{equation*}
$$

with $\lambda_{i}(\xi, \eta)(i=1,2, \cdots, s)$ real and distinct for any real $(\xi, \eta) \neq(0,0)$ and $p_{j}(j=1,2, \cdots, s)$ constants $\left(p_{1}+p_{2}+\cdots+p_{s}=N\right)$.

Condition II. For any real η and for any pure imaginary $\tau(=i \gamma$; γ : real), the real roots in ξ of $\operatorname{det}(\tau I+i \xi A+i \eta B)=0$ are at most double in the sense of the remark below for any real $(\gamma, \eta) \neq(0,0)$.

Remark. Let $\tau=\tau^{0}=i \gamma^{0}\left(\gamma^{0}\right.$: real), $\eta=\eta^{0}$ and ξ^{0} be a real double root of $\operatorname{det}\left(\tau^{0} I+i \xi A+i \eta^{0} B\right)=0$. Then a real double root means that $\frac{\partial}{\partial \xi} \lambda_{i}\left(\xi^{0}, \eta^{0}\right)=0$ and $\frac{\partial^{2}}{\partial \xi^{2}} \lambda_{i}\left(\xi^{0}, \eta^{0}\right) \neq 0$. A real simple root means

$$
\frac{\partial}{\partial \xi} \lambda_{i}\left(\xi^{0}, \eta^{0}\right) \neq 0
$$

Let $E^{+}(\tau, \eta)$ (resp. $E^{-}(\tau, \eta)$) be the subspace of C^{N} generated by the ordinary and the generalized eigenvectors corresponding to the roots in ξ of $\operatorname{det}(i \xi I+M(\tau, \eta))=0$ with positive (resp. negative) imaginary parts when $\operatorname{Re} \tau>0$. From Conditions I and II, we can construct at least locally a system of vectors $\left\{h_{j}^{+}(\tau, \eta)\right\}_{j=1,2, \cdots, m}$ continuous and homogeneous of degree zero in τ and η which is a base of $E^{+}(\tau, \eta)$ when $\operatorname{Re} \tau>0$ and remains linearly independent still when $\operatorname{Re} \tau \geq 0$ (see, M. Mizohata [4], M. Matsumura [3]).

Condition III. The absolute value of Lopatinski determinant is uniformly bounded away from 0 in $|\tau|^{2}+|\eta|^{2}=1$ (Re $\tau \geq 0$), that is, there exists a positive constant δ such that

$$
|\operatorname{det} P \mathcal{H}(\tau, \eta)| \geq \delta \quad \text { for } \quad|\tau|^{2}+|\eta|^{2}=1 \quad \operatorname{Re} \tau \geq 0
$$

holds, where $\mathscr{H}(\tau, \eta)$ is a $N \times m$-matrix $\left(h_{1}^{+}(\tau, \eta), \cdots, h_{m}^{+}(\tau, \eta)\right)$. Then we have

Theorem. Under Conditions I, II and III, we have the inequality

$$
\|\hat{u}(\tau ; x, \eta)\|_{L^{2}\left(R_{+}^{1}\right)} \leq \frac{\text { const. }}{\operatorname{Re} \tau}\|\hat{f}(\tau ; x, \eta)\|_{L^{2}\left(R_{+}^{1}\right)}
$$

for any solution $\hat{u}(\tau ; x, \eta)$ of the problem (1.2) where the constant does not depend on τ and η.
3. Sketch of the proof. In this section we treat the problems (1.3) and (1.4) and give a sketchy proof of the theorem assuming some lemmas. The solution $\hat{v}(\tau ; x, \eta)$ in $L^{2}\left(R^{1}\right)$ of the problem (1.3) can be represented by

$$
\begin{equation*}
\hat{v}(\tau ; x, \eta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x \cdot \xi}(\tau I+i \xi A+i \eta B)^{-1}\{\tilde{\hat{f}}(\tau ; \xi, \eta)+\tilde{\hat{g}}(\tau ; \xi, \eta)\} d \xi \tag{3.1}
\end{equation*}
$$

where $\tilde{\hat{f}}(\tau ; \xi, \eta)$ (briefly $\tilde{f}(\xi))$ denotes Fourier image of $\hat{f}(\tau ; x, \eta)$ in x and

$$
\begin{equation*}
P \hat{v}(\tau ; 0, \eta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P(\tau I+i \xi A+i \eta B)^{-1}\{\tilde{f}(\xi)+\tilde{g}(\xi)\} d \xi \tag{3.2}
\end{equation*}
$$

Lemma 1. Under Condition I, the inequality

$$
\begin{equation*}
\left|(\tau I+i \xi A+i \eta B)^{-1}\right| \leq \frac{\text { const. }}{\operatorname{Re} \tau} \tag{3.3}
\end{equation*}
$$

holds for $\operatorname{Re} \tau>0$, where the constant does not depend on τ, ξ and η.
From (3.1) and Lemma 1, we have the following:
Proposition 1. Under Condition I, the inequality

$$
\begin{equation*}
\|\hat{v}(\tau ; x, \eta)\|_{L^{2}\left(R^{1}\right)} \leq \frac{\mathrm{const}}{\operatorname{Re} \tau}\|\hat{f}(\tau ; x, \eta)+\hat{g}(\tau ; x, \eta)\|_{L^{2}\left(R^{1}\right)} \tag{3.4}
\end{equation*}
$$

holds for the solution $\hat{v}(\tau ; x, \eta)$ of the problem (1.3).
Lemma 2. From Condition I, the roots in ξ of $\operatorname{det}(\tau I+i \xi A+i \eta B)$ are never real for any $\tau(\operatorname{Re} \tau>0)$ and real ξ.

This lemma shows that the numbers of the roots in ξ of $\operatorname{det}(\tau I$ $+i \xi A+i \eta B)=0$ with positive and negative imaginary parts do not change for any $\tau(\operatorname{Re} \tau>0)$ and real η.

$$
\begin{equation*}
P \hat{v}(\tau ; 0, \eta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)^{-1}\left\{\tilde{f}\left(c \xi^{\prime}\right)+\tilde{g}\left(c \xi^{\prime}\right)\right\} d \xi^{\prime} \tag{3.2}
\end{equation*}
$$

where $\left(\tau^{\prime}, \xi^{\prime}, \eta^{\prime}\right)=\frac{1}{c}(\tau, \xi, \eta)$ and $c=\left(|\tau|^{2}+|\eta|^{2}\right)^{\frac{1}{2}}$. Here we decompose $\operatorname{det}\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)$ into factors:

$$
\begin{equation*}
\operatorname{det}\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)=i^{N} \operatorname{det} A \cdot A^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) A^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
& A^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)=\prod_{j=1}^{m}\left(\xi^{\prime}-\xi_{j}^{+}\left(\tau^{\prime}, \tau^{\prime}\right)\right) \tag{3.6}\\
& A^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)=\prod_{j=1}^{N-m}\left(\xi^{\prime}-\xi_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\right) \tag{3.7}
\end{align*}
$$

where $\xi_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)$ and $\xi_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)$ are the roots in ξ^{\prime} of $\operatorname{det}\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)$ $=0$ with positive and negative imaginary parts respectively. Let us $\tau^{\prime}=i \gamma^{0^{\prime}}, \eta^{\prime}=\eta^{0^{\prime}}$ and suppose that $M\left(i \gamma^{0^{\prime}}, \eta^{0^{\prime}}\right)$ admits a pure imaginary root $i \xi^{0^{\prime}}$ and that $\gamma^{0^{\prime}}=\lambda_{1}\left(\xi^{0^{\prime}}, \eta^{0^{\prime}}\right)$, then we have the following:

Lemma 3. If we suppose Conditions I and II, then the rank of $\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B$ is $N-p_{1}$ in a small neighbourhood of ($\tau^{0^{\prime}}, \xi^{0^{\prime}}, \eta^{0^{\prime}}$) $=\left(i \lambda_{1}\left(\xi^{0^{\prime}}, \eta^{0^{\prime}}\right), \xi^{0^{\prime}}, \eta^{0^{\prime}}\right)\left(\left|\tau^{\prime}\right|^{2}+\left|\eta^{\prime}\right|^{2}=1\right)$ when $\left(\tau^{\prime}, \xi^{\prime}, \eta^{\prime}\right)$ satisfies $\operatorname{det}\left(\tau^{\prime} I\right.$ $\left.+i \xi^{\prime} A+i \eta^{\prime} B\right)=0$.

With the help of this lemma, we can define the matrix $\mathcal{P}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)$ by

$$
\begin{equation*}
P\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)^{-1}=\frac{\mathscr{P}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) A_{0}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)} \tag{3.8}
\end{equation*}
$$

where

$$
A_{0}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)=\prod_{j=1}^{m^{\prime}}\left(\xi-\xi_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)\right), A_{0}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)=\prod_{j=1}^{m^{\prime \prime}}\left(\xi^{\prime}-\xi_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\right)
$$

here we changed the notation in the following way: we denotes $\xi_{1}^{+}=\cdots=\xi_{p_{1}}^{+}$simply by $\xi_{1}^{+}, \xi_{p_{1+1}}=\cdots$ by ξ_{2}^{+}and so on and $\xi_{1}^{+}, \cdots, \xi_{p}^{+}$ are all distinct roots of $\operatorname{det}\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)=0$ which approach real roots when ($\tau^{\prime}, \eta^{\prime}$) tends to ($\tau^{0^{\prime}}=i \gamma^{0^{\prime}}, \gamma^{0^{\prime}}$). Further we can decompose
(3.9) $\frac{\mathcal{P}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) A_{0}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}=\frac{\mathcal{P}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}+\frac{\mathcal{P}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}$

$$
\begin{align*}
& \frac{\mathcal{P}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}=\sum_{j=1}^{q+s} \frac{c_{j}^{+}\left(\xi^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{+} ; \tau^{\prime}, \eta^{\prime}\right)}{\xi-\xi_{j}^{+}}+R^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) \tag{3.10}\\
& \frac{\mathcal{P}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}{A_{0}^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)}=\sum_{j=1}^{q+s^{\prime}} \frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{-} ; \tau^{\prime}, \eta^{\prime}\right)}{\xi-\xi_{j}^{-}}+R^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right) \tag{3.11}
\end{align*}
$$

where $\xi_{j}^{ \pm}\left(\tau^{\prime}, \eta^{\prime}\right)(j=1,2, \cdots, q)$ denote the roots which approach the real double roots $\xi_{j}^{0}\left(i \gamma^{0^{\prime}}, \eta^{0^{\prime}}\right)$ and $\xi_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)(j=q+1, \cdots, q+s=p)$, $\xi_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\left(j=q+1, \cdots, q+s^{\prime}\right)$ denote the roots which approach the real simple roots when ($\tau^{\prime}, \eta^{\prime}$) tends to ($i \gamma^{0^{\prime}}, \eta^{0^{\prime}}$).

Lemma 4. Under Condition II, we have

1) $\left|c_{j}^{ \pm}\left(\tau^{\prime}, \eta^{\prime}\right)\right|=0\left(\frac{1}{\left|\xi_{j}^{+}-\xi_{j}\right|}\right) \quad$ for $\quad j=1,2, \cdots, q$
2) $\left|\frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)}{c_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)}\right| \leq$ const. for $j=1,2, \cdots, q$
3) $\left|c_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)\right| \leq$ const. for $j=q+1, \cdots, q+s$ $\left|c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\right| \leq$ const. for $j=q+1, \cdots, q+s^{\prime}$
4) $\left|R^{ \pm}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)\right| \leq \frac{\text { const. }}{1+|\xi|} \quad$ for real ξ
for any $\left(\tau^{\prime}, \eta^{\prime}\right)$ in $V^{\prime} \cap\left\{\operatorname{Re} \tau^{\prime}>0\right\}$ where $V^{\prime}=\frac{1}{c} V$ and V is a small neighbourhood of ($i \gamma^{0}, \eta^{0}$)

Lemma 5. Let α and β be not real, then the equality

$$
\int_{-\infty}^{\infty} \frac{1}{\xi^{\prime}-\alpha} \cdot \frac{1}{\xi^{\prime}-\beta} d \xi^{\prime}=\left\{\begin{array}{cl}
2 \pi i \frac{1}{\alpha-\bar{\beta}} & \text { for } \operatorname{Im}[\alpha]>0, \operatorname{Im}[\beta]>0 \tag{3.12}\\
-2 \pi i \frac{1}{\alpha-\beta} & \text { for } \operatorname{Im}[\alpha]<0, \operatorname{Im}[\beta]<0 \\
0 & \text { for } \operatorname{Im}[\alpha] \cdot \operatorname{Im}[\beta]<0
\end{array}\right.
$$

holds.
Lemma 6. Under Condition I, we have
$\left|\operatorname{Im} \xi^{\prime}\left(\tau^{\prime}, \eta^{\prime}\right)\right| \geq$ const. $\operatorname{Re} \tau^{\prime}$ where $\xi^{\prime}\left(\tau^{\prime}, \eta^{\prime}\right)$ is a root of $\operatorname{det}\left(\tau^{\prime} I+i \xi^{\prime} A+i \eta^{\prime} B\right)=0$ in ξ^{\prime}.

Lemma 7. Under Conditions I and II, we have

$$
\begin{equation*}
\left|\frac{\operatorname{Im}\left[\xi_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right)\right]}{\operatorname{Im}\left[\xi_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\right]}\right| \leq \text { const. } \quad(j=1,2, \cdots, q) \tag{3.14}
\end{equation*}
$$

for $\left(\tau^{\prime}, \eta^{\prime}\right)$ in $V^{\prime} \cap\left\{\operatorname{Re} \tau^{\prime}>0\right\}$.
Using above decompositions

$$
\begin{aligned}
P \hat{v}(\tau ; & 0, \eta)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=1}^{q}\left\{\frac{c_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{+}\right)}{\xi^{\prime}-\xi_{j}^{+}} \tilde{g}\left(c \xi^{\prime}\right)\right. \\
& \left.+\frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{+}\right)}{\xi^{\prime}-\xi_{j}^{-}} \tilde{f}\left(c \xi^{\prime}\right)\right\} d \xi^{\prime} \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=1}^{q} \frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right)\left\{\mathscr{P}\left(\xi_{j}^{-}\right)-\mathcal{P}\left(\xi_{j}^{+}\right)\right\}}{\xi^{\prime}-\xi_{j}^{-}} \tilde{f}\left(c \xi^{\prime}\right) d \xi^{\prime} \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=q+1}^{q+s}\left\{\frac{c_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{+}\right)}{\xi^{\prime}-\xi_{j}^{+}}+R^{+}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)\right\} \widetilde{g}\left(c \xi^{\prime}\right) d \xi^{\prime} \\
& +\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=q+1}^{q+s^{\prime}}\left\{\frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{-}\right)}{\xi^{\prime}-\xi_{j}^{-}}+R^{-}\left(\xi^{\prime} ; \tau^{\prime}, \eta^{\prime}\right)\right\} \tilde{f}\left(c \xi^{\prime}\right) d \xi^{\prime}
\end{aligned}
$$

With the help of above lemmas we can construct a compensating function $\tilde{g}\left(c \xi^{\prime}\right)$ from the condition

$$
\sum_{j=1}^{q} \int_{-\infty}^{\infty}\left\{\frac{c_{j}^{+}\left(\tau^{\prime}, \eta^{\prime}\right) \mathscr{P}\left(\xi_{j}^{+}\right)}{\xi^{\prime}-\xi_{j}^{+}} \widetilde{g}\left(c \xi^{\prime}\right)+\frac{c_{j}^{-}\left(\tau^{\prime}, \eta^{\prime}\right) \mathcal{P}\left(\xi_{j}^{+}\right)}{\xi^{\prime}-\xi_{j}^{-}} \tilde{f}\left(c \xi^{\prime}\right)\right\} d \xi^{\prime}=0
$$

and further $\tilde{g}\left(c \xi^{\prime}\right)$ satisfies the following properties:

1) $\int_{-\infty}^{\infty}\left|\tilde{g}\left(c \xi^{\prime}\right)\right|^{2} d \xi^{\prime} \leq$ const. $\int_{-\infty}^{\infty}\left|\tilde{f}\left(c \xi^{\prime}\right)\right|^{2} d \xi^{\prime}$.
2) the support of $\tilde{g}(\tau ; x, \eta)$ is contained in R_{-}^{1}.

Proposition 2. Under Conditions I and II, the inequality

$$
|P \hat{v}(\tau ; 0, \eta)| \leq \frac{\text { const. }}{\sqrt{\operatorname{Re} \tau}}\left(\int_{-\infty}^{\infty}|\tilde{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
$$

holds for $(\tau, \eta) \in V \cap\{\operatorname{Re} \tau>0\}$. Where the constant does not depend on τ and η.

Next we treat the solution $\hat{w}(\tau ; x, \eta)$ in $L^{2}\left(R_{+}^{1}\right)$ of the problem (1.4). As $\hat{w}(\tau ; 0, \eta)$ should be in $E^{+}(\tau, \eta), \hat{w}(\tau ; 0, \eta)$ can be written in the form

$$
\begin{equation*}
\hat{w}(\tau ; 0, \eta)=c_{1} h_{1}^{+}(\tau, \eta)+\cdots+c_{m} h_{m}^{+}(\tau, \eta) \tag{3.15}
\end{equation*}
$$

(3.16) $\quad P \hat{w}(\tau ; 0, \eta)=c_{1} P h_{1}^{+}(\tau, \eta)+\cdots+c_{m} P h_{m}^{+}(\tau, \eta)=-P \hat{v}(\tau ; 0 . \eta)$

From Condition III and the Cramer formula
(3.17) $\left|c_{i}(\tau, \eta)\right| \leq$ const. $|P \hat{v}(\tau ; 0, \eta)|$.

The solution $\hat{w}(\tau ; x, \eta)$ in $L^{2}\left(R_{+}^{1}\right)$ of the problem (1.4) is

$$
\begin{equation*}
\hat{w}(\tau ; x, \eta)=\frac{1}{2 \pi} \oint_{c} e^{i \xi x}(i \xi I+M(\tau, \eta))^{-1} \hat{w}(\tau ; 0, \eta) d \xi \tag{4.18}
\end{equation*}
$$

where c is a simple closed curve containing the roots with positive imaginary part of $\operatorname{det}(\tau I+i \xi A+i \eta B)=0$ in ξ (see M. Mizohata [4]). By Proposition 2, we have

$$
\begin{equation*}
\int_{0}^{\infty}|\hat{w}(\tau ; x, \eta)|^{2} d x \leq \frac{\text { const. }}{(\operatorname{Re} \tau)^{2}} \int_{-\infty}^{\infty}|\tilde{f}(\xi)|^{2} d \xi \tag{4.19}
\end{equation*}
$$

This inequality and Proposition 1 follow the theorem.
The detailed proof of the theorem will appear in Journal of Mathematics of Kyoto University.

Acknowledgement. The author is deeply indebted Professor S. Mizohata [5] who suggested the problem and contributed much invaluable encouragement and advice. He wishes also to thank Professors M. Yamaguti and M. Matsumura for helpful conversations.

References

[1] Agmon, S.: Colloques internationaux du centre national de la recherche scientifique, No. 117, pp. 13-18, Paris (1962).
[2] Hersch, R.: J. Math. and Mech., 12, 317-334 (1963).
[3] Matsumura, M.: Publ. RIMS, Kyoto Univ., Ser. A, 4, 309-359 (1968).
[4] Mizohata, S.: Introductions to Integral Equations (Book). Asakura Pub. (1968).
[5] -: On Agmon's results for hyperbolic equations (unpublished).
[6] Sarason, L.: Arch. Rational Mech. Anal., 18, 311-334 (1965).

