171. On the Nörlund Summability of Fourier Series

By Masako Izumi and Shin-ichi Izumi
Department of Mathematics, The Australian National University, Canberra, Australia
(Comm. by Zyoiti Suetuna, m. J. A., Nov. 12, 1969)

1. Introduction and Theorems.

1.1. Definitions. Let $\sum a_{n}$ be a given series and s_{n} be its nth partial sum. Let $\left(p_{n}\right)$ be a sequence of real numbers such that $p_{0}=0$, $P_{n}=p_{0}+p_{1}+\cdots+p_{n} \neq 0$ for all n and $\left|P_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$. If the sequence

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k} \quad(n=1,2, \cdots) \tag{1}
\end{equation*}
$$

tends to a limit s as $n \rightarrow \infty$, then the series $\sum a_{n}$ is said to be (N, p_{n}) summable to s. This method of summation is regular if and only if

$$
\begin{equation*}
\sum_{k=0}^{n}\left|p_{k}\right| \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1 \text { and } p_{n} / P_{n} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2}
\end{equation*}
$$

Let f be an integrable function with period 2π and its Fourier series be

$$
\begin{equation*}
f(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=0}^{\infty} A_{n}(x) . \tag{3}
\end{equation*}
$$

We write $\varphi(t)=\varphi_{x}(t)=f(x+t)+f(x-t)-2 f(x)$.
1.2. E. Hille and J. D. Tamarkin [1] have applied the (N, p_{n}) summation to Fourier series. Extending one of their theorems, O. P. Vershney [2] has proved the following

Theorem I. Suppose that the sequence $\left(p_{n}\right)$ of real numbers satisfies the conditions:

$$
\begin{equation*}
n\left|p_{n}\right| \leqq A\left|P_{n}\right| \log (n+1) \quad \text { for } n \geqq 1, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{k\left|\Delta p_{k}\right|}{\log (k+1)} \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left|P_{k}\right|}{k \log (k+1)} \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1 \tag{6}
\end{equation*}
$$

If

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u=o\left(t / \log \frac{1}{t}\right) \quad \text { as } t \rightarrow 0 \tag{7}
\end{equation*}
$$

then the Fourier series of f is $\left(N, p_{n}\right)$ summable to $f(x)$.
On the other hand O. P. Vershney [3] proved the
Theorem II. Let $\left(p_{n}\right)$ be a positive non-increasing sequence. Then the Fourier series of f satisfying the condition

$$
\varphi(t)=o\left(1 / \log \frac{1}{t}\right) \quad \text { as } t \rightarrow 0
$$

is $\left(N, p_{n}\right)$ summable at the point x, if and only if

$$
\sum_{k=1}^{n} \frac{P_{k}}{k \log (k+1)} \leqq A P_{n} \quad \text { for all } n \geqq 1 .
$$

We are going to prove a theorem containing both of above theorems:

Theorem 1. Suppose that $L(u)$ is a positive non-decreasing function on the interval $(0, \infty), k / L(k) \uparrow \infty$ as $k \rightarrow \infty$ and $\int_{1}^{k} \frac{d u}{L(u)} \leqq \frac{A k}{L(k)}$ for all $k \geqq 1$ and that the sequence $\left(p_{n}\right)$ of real numbers satisfies the condition

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{k\left|\Delta p_{k}\right|}{L(k)} \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1 \tag{8}
\end{equation*}
$$

(i) $I f$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left|P_{k}\right|}{k L(k)} \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1 \tag{9}
\end{equation*}
$$

then the Fourier series of f satisfying the condition

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t}|\varphi(u)| d u=o(t / L(1 / t)) \quad \text { as } t \rightarrow 0 \tag{10}
\end{equation*}
$$

is $\left(N, p_{n}\right)$ summable to $f(x)$ at the point x.
(ii) If $P_{n}>0$ for all n, then the condition (9) is a necessary and sufficient condition for $\left(N, p_{n}\right)$ summability of f satisfying the condition (10).

If $L(u)=\log (u+1)$ in Theorem 1, this is a generalization of Theorems I and II.

The case $L(u)=(\log (u+1))^{a}(0<\alpha<1)$ was treated by B.N. Sahney [4] for f satisfying stronger condition.

The condition (8) implies

$$
\begin{equation*}
n\left|p_{n}\right| \leqq A\left|P_{n}\right| L(n) \quad \text { and } \quad n\left|p_{n+1}\right| \leqq A\left|P_{n}\right| L(n) \quad \text { for all } n \geqq 1 \tag{11}
\end{equation*}
$$ since

$$
A\left|P_{n}\right| \geqq \sum_{k=1}^{n} \frac{k\left|\Delta p_{k}\right|}{L(k)} \geqq \frac{1}{L(n)}\left|\sum_{k=1}^{n-1} k \Delta p_{k}\right|=\frac{\left|P_{n}-n p_{n}\right|}{L(n)} .
$$

1.3. We define a function $p(u)$ on the interval $(0, \infty)$ such that $p(n)=p_{n}$ for every integer $n \geqq 0$ and $p(u)$ is linear at every non-integral point u and is continuous in the whole interval. We put $P(u)=\int_{0}^{u} p(v) d v$ for $u>0$, then $P(n)=\sum_{k=1}^{n-1} p_{k}+\frac{1}{2} p_{n}$.

We have proved the following theorem [5], as a generalization of the T. Singh theorem [6]:

Theorem III. If $\left(p_{n}\right)$ is a positive sequence satisfying the condition

$$
\begin{equation*}
\sum_{k=1}^{n} k\left|\Delta p_{k}\right| \leqq A P_{n} \quad \text { for all } n \geqq 1 \tag{12}
\end{equation*}
$$

and if
(13)

$$
\Phi(t)=o(|p(1 / t)| /|P(1 / t)|) \quad \text { as } t \rightarrow 0
$$

then the Fourier series of f is $\left(N, p_{n}\right)$ summable to $f(x)$ at the point x. We can generalize this theorem as follows:
Theorem 2. Suppose that $\left(p_{n}\right)$ is a sequence of real numbers satisfying the condition

$$
\begin{equation*}
\sum_{k=1}^{n} k\left|\Delta p_{k}\right| \leqq A\left|P_{n}\right| \quad \text { for all } n \geqq 1, \tag{14}
\end{equation*}
$$

then the Fourier series of f satisfying the condition (13) is $\left(N, p_{n}\right)$ summable to $f(x)$ at the point x.

The condition (14) implies that $n\left|p_{n}\right| \leqq A\left|P_{n}\right|$ and $n\left|p_{n+1}\right| \leqq A\left|P_{n}\right|$ for all $n \geqq 1$.
2. Proof of Theorem 1. By (1), the nth Nörlund mean of the Fourier series is

$$
\begin{aligned}
t_{n}= & \frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \int_{0}^{\pi} \varphi(t) \frac{\sin (k+1 / 2) t}{2 \sin t / 2} d t \\
= & -\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \int_{0}^{\pi} \frac{\varphi(t) \cos (n+1 / 2) t}{2 \sin t / 2} \sin (n-k) t d t \\
& +\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} \int_{0}^{\pi} \frac{\varphi(t) \sin (n+1 / 2) t}{2 \sin t / 2} \cos (n-k) t d t=-u_{n}+\bar{u}_{n} .
\end{aligned}
$$

We shall estimate u_{n}. We write $h(t)=\varphi(t) \cos (n+1 / 2) t$, then, by (10) and (11)

$$
\begin{aligned}
u_{n}= & \frac{1}{P_{n}} \int_{0}^{\pi} \frac{h(t)}{(2 \sin t / 2)^{2}}\left\{\sum_{k=1}^{n-1} \Delta p_{k}(1-\cos (k+1 / 2) t)\right. \\
& =\frac{1}{P_{n}} \int_{0}^{\pi} \frac{h(t)}{(2 \sin t / 2)^{2}}\left\{\sum_{k=1}^{n-1} \Delta p_{k}(1-\cos t / 2)+p_{n}(1-\cos (k+1 / 2) t)\right\} d t+o(1) \\
= & \left.\frac{1}{P_{n}} \sum_{k=1}^{n-1} \Delta p_{k}\left(\int_{0}^{1 / k}+\int_{1 / k}^{\pi}\right) \frac{h(t)}{(2 \sin t / 2)^{2}}(1-\cos (k+1 / 2) t) d t+o(1)\right\} d t \\
= & v_{n}+w_{n}+o(1) \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

where

$$
\left|v_{n}\right| \leqq \frac{1}{\left|P_{n}\right|} \sum_{k=1}^{n-1} k^{2}\left|\Delta p_{k}\right| \int_{0}^{1 / k}|\varphi(t)| d t=o(1) \quad \text { as } n \rightarrow \infty
$$

by the conditions (8) and (10), and

$$
\left|w_{n}\right| \leqq \frac{1}{\left|P_{n}\right|} \sum_{k=1}^{n-1}\left|\Delta p_{k}\right| \int_{1 / k}^{\pi} \frac{|\varphi(t)|}{t^{2}} d t=o(1) \quad \text { as } n \rightarrow \infty
$$

since

$$
\int_{1 / k}^{\pi} \frac{|\varphi(t)|}{t^{2}} d t=\left[\frac{\Phi(t)}{t^{2}}\right]_{1 / k}^{\pi}+2 \int_{1 / k}^{\pi} \frac{\Phi(t)}{t^{2}} d t=o\left(\frac{k}{L(k)}\right) \quad \text { as } k \rightarrow \infty
$$

by (10). Thus we have proved that $u_{n}=o(1)$ as $n \rightarrow \infty$.
Putting $\bar{h}(t)=\varphi(t) \sin (n+1 / 2) t$, we have

$$
\begin{aligned}
\bar{u}_{n}= & \frac{1}{P_{n}} \int_{0}^{\pi} \frac{\bar{h}(t)}{(2 \sin t / 2)^{2}}\left\{\sum_{k=1}^{n-1} \Delta p_{k} \sin (k+1 / 2) t\right. \\
& =\frac{1}{P_{n}} \int_{0}^{\pi} \frac{\left.-p_{1} \sin t / 2+p_{n} \sin (n+1 / 2) t\right\} d t}{(2 \sin t / 2)^{2}}\left\{\sum_{k=1}^{n-1} \Delta p_{k} \sin (k+1 / 2) t\right\} d t+o(1) \\
= & \frac{1}{P_{n}} \sum_{k=1}^{n-1} \Delta p_{k}\left(\int_{0}^{1 / k}+\int_{1 / k}^{\pi}\right) \frac{\bar{h}(t)}{(2 \sin t / 2)^{2}} \sin (k+1 / 2) t d t+o(1) \\
= & \bar{v}_{n}+\bar{w}_{n}+o(1),
\end{aligned}
$$

where $\bar{w}_{n}=o(1)$ by similar estimation to w_{n}. Now, \bar{v}_{n} has a different feature from v_{n}. We have

$$
\bar{v}_{n}=\frac{1}{P_{n}} \sum_{k=1}^{n-1} \Delta p_{k}\left(\int_{0}^{1 / n}+\int_{1 / n}^{1 / k}\right) \frac{\bar{h}(t)}{t^{2}} \sin k t d t+o(1)=\bar{x}_{n}+\bar{y}_{n}+o(1)
$$

where

$$
\begin{aligned}
\left|\bar{x}_{n}\right| & \leqq \frac{n}{\left|P_{n}\right|} \sum_{k=1}^{n-1} k\left|\Delta p_{k}\right| \int_{0}^{1 / n}|\varphi(t)| d t \\
& =o\left(\frac{1}{\left|P_{n}\right| L(n)} \sum_{k=1}^{n-1} k\left|\Delta p_{k}\right|\right)=o(1) \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

by (8) and (10). Again using (8) and (10), we get

$$
\begin{aligned}
P_{n} \bar{y}_{n} & =\sum_{k=1}^{n-1} \Delta p_{k} \int_{1 / n}^{1 / k} \bar{h}(t) t^{-2}\left(k t+O\left(k^{3} t^{3}\right)\right) d t \\
& =\sum_{k=1}^{n-1} k \Delta p_{k} \sum_{j=k}^{n-1} \int_{1 /(j+1)}^{1 / j} \bar{h}(t) t^{-1} d t+o\left(\left|P_{n}\right|\right) \\
& =\sum_{j=1}^{n-1} \int_{1 /(j+1)}^{1 / j} \bar{h}(t) t^{-1} d t\left(\sum_{k=1}^{j} k \Delta p_{k}\right)+o\left(\left|P_{n}\right|\right) \\
& =\sum_{j=1}^{n-1} \int_{1 /(j+1)}^{1 / j} \frac{\bar{h}(t)}{t}\left(P\left(\frac{1}{t}\right)-\frac{1}{t} p\left(\frac{1}{t}\right)\right) d t+o\left(\left|P_{n}\right|\right),
\end{aligned}
$$

since

$$
\begin{aligned}
\sum_{k=1}^{j} k \Delta p_{k}= & P_{j+1}-(j+1) p_{j+1} \\
& =P\left(\frac{1}{t}\right)-\frac{1}{t} p\left(\frac{1}{t}\right)+O\left(\left|p_{j}\right|+\left|p_{j+1}\right|+j\left|\Delta p_{j}\right|\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=1}^{n-1} j\left|p_{j}\right| \int_{1 /(j+1)}^{1 / j}|\varphi(t)| d t=o\left(\sum_{j=1}^{n-1} \frac{\left|p_{j}\right|}{L(j)}\right)=o\left(\left|P_{n}\right|\right) \\
& \sum_{j=1}^{n-1} j^{2}\left|\Delta p_{j}\right| \int_{1 /(j+1)}^{1 / j}|\varphi(t)| d t=o\left(\sum_{j=1}^{n-1} \frac{j\left|\Delta p_{j}\right|}{L(j)}\right)=o\left(\left|P_{n}\right|\right)
\end{aligned}
$$

by (8), (10) and (11). Therefore, putting $\bar{H}(t)=\int_{0}^{t} \bar{h}(u) d u$, we get

$$
P_{n} \bar{y}_{n}=\int_{1 / n}^{1} \frac{\tilde{h}(t)}{t}\left(P\left(\frac{1}{t}\right)-\frac{1}{t} p\left(\frac{1}{t}\right)\right) d t+o\left(\left|P_{n}\right|\right)
$$

$$
\begin{aligned}
= & {\left[\frac{\bar{H}(t)}{t}\left(P\left(\frac{1}{t}\right)-\frac{1}{t} p\left(\frac{1}{t}\right)\right)\right]_{t=1 / n}^{1}+\int_{1 / n}^{1} \frac{\bar{H}(t)}{t^{2}} P\left(\frac{1}{t}\right) d t } \\
& -\int_{1 / n}^{1} \frac{\bar{H}(t)}{t^{3}} p\left(\frac{1}{t}\right) d t-\int_{1 / n}^{1} \frac{\bar{H}(t)}{t^{4}} p^{\prime}\left(\frac{1}{t}\right) d t+o\left(\left|P_{n}\right|\right) \\
= & \int_{1 / n}^{1} \frac{\bar{H}(t)}{t^{2}} P\left(\frac{1}{t}\right) d t+o\left(\left|P_{n}\right|\right) \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

Collecting above estimations, we get

$$
\begin{equation*}
t_{n}=\frac{1}{\pi P_{n}} \int_{1 / n}^{1} \frac{\bar{H}(t)}{t^{2}} P\left(\frac{1}{t}\right) d t+o(1) \quad \text { as } n \rightarrow \infty . \tag{15}
\end{equation*}
$$

By (9) and (10), we get $t_{n}=o(1)$ as $n \rightarrow \infty$. Hence the condition (9) is sufficient.

We shall now prove the necessity of the condition (9), supposing that $P_{n} \geqq 0$. We suppose that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. If the condition (9) does not hold, then there are an increasing sequence (n_{k}) of integers and an increasing sequence (C_{k}) tending to infinity such that

$$
\begin{equation*}
\frac{1}{P_{n_{k}}} \int_{1 / n_{k}}^{1} \frac{P(1 / t)}{t L(1 / t)} d t>C_{k} \quad(k=1,2, \cdots) \tag{16}
\end{equation*}
$$

We can find a function φ_{0} such that

$$
\begin{equation*}
\int_{0}^{t}\left|\varphi_{0}(u)\right| d u=\varepsilon(t) . \quad t / L(1 / t) \text { for } t>0 \tag{17}
\end{equation*}
$$

where $\varepsilon(t) \downarrow 0$ as $t \downarrow 0$ and $\varepsilon\left(1 / n_{k}\right)=1 / \sqrt{C_{k}}$ for all k. We define $\left(m_{k}\right)$, a subsequence of (n_{k}), by the inductive method as follows: Let $m_{1}=n_{1}$, and if m_{k} is defined, m_{k+1} is taken such that

$$
\begin{equation*}
\int_{1 / m_{k+1}}^{1 / m_{k}}\left|\varphi_{0}(u)\right| d u>2 \int_{0}^{1 / m_{k+1}}\left|\varphi_{0}(u)\right| d u \tag{18}
\end{equation*}
$$

and

$$
\frac{1}{P_{m_{k}}} \int_{1 / m_{k}}^{1 / m_{k-1}} \frac{P(1 / t)}{t L(1 / t)} d t \geqq \frac{1}{2} C_{m_{k}}, \frac{1}{P_{m_{k}}} \int_{1 / m_{k-1}}^{1} \frac{P(1 / t)}{t L(1 / t)} d t<\frac{1}{16} \sqrt{C_{k}} .
$$

We shall define a function φ such that

$$
\varphi(u) \sin \left(m_{2 k}+1 / 2\right) u=\left|\varphi_{0}(u)\right| \text { for }\left(1 / m_{2 k+1}, 1 / m_{2 k-1}\right) \quad(k=1,2, \cdots) .
$$

Then, by (17) and (18),

$$
\begin{aligned}
& \frac{1}{P_{m_{2 k}}} \int_{1 / m_{2 k}}^{1} \frac{P(1 / t)}{t^{2}} d t \int_{0}^{t} \varphi(u) \sin \left(m_{2 k}+1 / 2\right) u d u \\
& \geqq \frac{1}{P_{m_{2 k}}} \int_{1 / m_{2 k-1}}^{1 / 2} \frac{P(1 / t)}{t^{2}} d t\left(\int_{1 / m_{2 k+1}}^{t} \varphi(u) \sin \left(m_{2 k}+1 / 2\right) u d u\right. \\
& \left.\quad-\int_{0}^{1 / m_{2 k+1}}|\varphi(u)| d u\right)-\frac{1}{P_{m_{2 k}}} \int_{1 / m_{2 k-1}}^{1} \frac{P(1 / t)}{t^{2}} \int_{0}^{t}|\varphi(u)| d u \\
& \geqq \frac{1}{P_{m_{2 k}}}\left(\frac{1}{2} \int_{1 / m_{2 k}}^{1 / m_{2 k-1}} \frac{P(1 / t)}{t^{2}} d t \int_{1 / m_{2 k+1}}^{t}\left|\varphi_{0}(u)\right| d u-\int_{1 / m_{2 k-1}}^{1} \frac{P(1 / t)}{t^{2}} d t\right. \\
& \left.\quad \times \int_{0}^{t}\left|\varphi_{0}(u)\right| d u\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqq \frac{1}{P_{m_{2 k}}}\left(\frac{1}{4} \int_{1 / m_{2 k}}^{1 / m_{2 k-1}} \frac{P(1 / t)}{t^{2}} d t \int_{0}^{t}\left|\varphi_{0}(u)\right| d u-\int_{1 / m_{2 k-1}}^{1} \frac{P(1 / t)}{t^{2}} d t \int_{0}^{t}\left|\varphi_{0}(u)\right| d u\right) \\
& \geqq \frac{1}{P_{m_{2 k}}}\left(\frac{1}{4} \int_{1 / m_{2 k}}^{1 / m_{2 k-1}} \frac{P(1 / t) \varepsilon(t)}{t L(1 / t)} d t-\int_{1 / m_{2 k-1}}^{1} \frac{\varepsilon(t) P(1 / t)}{t L(1 / t)} d t\right) \\
& \geqq \frac{1}{P_{m_{2 k}}}\left(\frac{\varepsilon\left(1 / m_{2 k}\right)}{4} \int_{1 / m_{2 k}}^{1 / m_{2 k-1}} \frac{P(1 / t)}{t L(1 / t)} d t-\int_{1 / m_{2 k-1}}^{1} \frac{P(1 / t)}{t L(1 / t)} d t\right) \\
& \geqq \frac{1}{8} C_{m_{2 k}} / \sqrt{C_{m 2 k}}-\frac{1}{16} \sqrt{C_{m_{2 k}}}=\frac{1}{16} \sqrt{C_{m_{2 k}} \rightarrow \infty \quad \text { as } k \rightarrow \infty} \quad l
\end{aligned}
$$

which is a contradiction.
3. Proof of Theorem 2. Proof runs similarly to that of Theorem 1, so that we shall only remark the following facts. By the conditions (13) and (14), we get

$$
\begin{aligned}
\int_{1 / k}^{\pi}|\varphi(t)| t^{-2} d t & =\left[\Phi(t) t^{-2}\right]_{1 / k}^{1}+2 \int_{1 / k}^{1} \Phi(t) t^{-3} d t \\
& \leqq A+o(k)+o\left(\int_{1 / k}^{1} \frac{|p(1 / t)|}{t^{3} P(1 / t)} d t\right)=o(k) \\
\int_{1 / n}^{\pi} \frac{\Phi(t)}{t^{4}} p^{\prime}\left(\frac{1}{t}\right) d t & =o\left(\int_{1 / n}^{1} \frac{\left|p(1 / t) p^{\prime}(1 / t)\right|}{t^{4} P(1 / t)} d t\right) \\
& =o\left(\sum_{k=1}^{n} k^{2}\left|p_{k} \cdot \Delta p_{k}\right| /\left|P_{k}\right|\right)=o\left(\sum_{k=1}^{n} k\left|\Delta p_{k}\right|\right)=o\left(\left|P_{n}\right|\right)
\end{aligned}
$$

and then we can use them for the estimation of w_{n} and $P_{n} \bar{y}_{n}$, respectively. The integral of (15) is $o\left(\sum_{k=1}^{n}\left|p_{k}\right|\right)=o\left(\sum_{k=1}^{n} k\left|\Delta p_{k}\right|+n\left|p_{n+1}\right|\right)$ $=o\left(\left|P_{n}\right|\right)$. Thus Theorem 2 is proved.

References

[1] E. Hille and J. D. Tamarkin: On the summability of Fourier series. Trans. Am. Math. Soc., 34, 757-783 (1932).
[2] O. P. Varshney: On the Nörlund summability of a Fourier series and its conjugate series. Thesis for the degree Ph. D at the University of Saugar (1960).
[3] -: On the Nörlund summability of Fourier series. Bulletins de l'Acad. royal des sciences, des lettres et des beaux-arts de Belgique, Classe des Sciences, 5 s. 52, 1552-1558 (1966).
[4] B. N. Sahney: On the Nörlund summability of Fourier series. Pacific Journ. of Math., 13, 251-262 (1963).
[5] M. Izumi and S. Izumi: Nörlund summability of Fourier series. Pacific Journ. of Math., 26, 289-301 (1968).
[6] T. Singh: Nörlund summability of Fourier series and its conjugate series. Annali di Math. (Bologna), 64, 123-132 (1964).

