186. Realization of Irreducible Bounded Symmetric Domain of Type (VI)

By Mikio ISE (Comm. by Kunihiko Kodaira, m. j. a., Dec. 12, 1969)

1. This is a continuation of our preceding note [3] which appeared in these Proceedings. We shall present here, without proof, the *canonical bounded model* of the irreducible bounded symmetric domain of exceptional type (VI) in the sense of [4].

As was pointed out in [4], we need at first to describe explicitly the irreducible representation of the complex simple Lie algebra of type E_{τ} which is of the lowest degree, 56. Such a representation was previously discussed by several authors, for instance by H. Freudenthal; however a presentation of that representation which suited our purpose was recently given by R. B. Brown [1] for the first time. His result will be, therefore, briefly reproduced in the following sections 2-3. As for the notation we refer the reader to [3], [4].

2. Let \Im denote the exceptional simple Jordan algebra as described in [1]-[3]; namely \Im is the totality of the (3.3)-hermitian matrices over the complex Cayley numbers \Im . The canonical nondegenerate inner-product (u, v) in \Im will be introduced by (u, v) = Trace $(u \circ v), (u, v \in \Im)$ (cf. [1], [2], [5]), for which we consider the dual \Im^* of \Im and will identify hereafter \Im^* with \Im through this inner-product. Now we introduce a 56-dimensional complex vector space V by putting (1) $V = V_1 \oplus V_2 \oplus V_3 \oplus V_4$,

where both V_1 and V_4 are of 1-dimension and $V_2 = \mathfrak{F}^*$, $V_3 = \mathfrak{F}$. The element x of V is then written as

(2) $x = \alpha f_1 + u^* + v + \beta f_2; \alpha, \beta \in C, u, v \in \Im,$

where f_1, f_2 denote, respectively, the generators of V_1, V_4 and $u^* \in \mathfrak{F}^*$ is defined by $u^*(v) = (u, v)$ for all $v \in \mathfrak{F}$. After R. B. Brown we introduce in V a non-associative algebra structure \mathfrak{B} by the following rule:

i)
$$f_i f_i = f_1 \ (i=1, 2), \qquad f_1 f_2 = f_2 f_1 = 0$$

ii) $f_1 u = \frac{1}{3} u, \quad f_2 u = \frac{2}{3}; \quad f_1 v^* = \frac{2}{3} v^*, \quad f_2 v^* = \frac{1}{3} v^*$

iii)
$$uf_1=0$$
, $uf_2=u$; $v^*f_1=v^*$, $v^*f_2=0$

iv)
$$uv^* = (u, v)f_1, \quad u^*v = (u, v)f_2$$

v)
$$uv = 2(u \times v)^*$$
, $u^*v^* = 2(u \times v)$

 $(u, v \in \mathfrak{F})$, where the crossed product $u \times v$ in \mathfrak{F} is given through $(u \times v, w) = \mathfrak{Z}(u, v, w)$ (for $w \in \mathfrak{F}$), the right hand side being the tri-linear form on \mathfrak{F} obtained by linearizing the cubic from on \mathfrak{F} (see, [1], [5]):

No. 10] Irreducible Bounded Symmetric Domain of Type (VI)

$$\det(u) = \xi_1 \xi_2 \xi_3 + 2(x_3 x_1, \bar{x}_2) - \sum_{i=1}^3 \xi_i x_i x_i \quad (u \in \mathfrak{Z}).$$

3. In the algebra \mathfrak{V} thus introduced we define the trace-function and the non-degenerate inner-product as follows:

$$\Gamma \operatorname{race}(x) = \alpha + \beta, \quad (x, y) = \operatorname{Trace}(xy)$$

Then, if we write $x = \alpha f_1 + a^* + b + \beta f_2$, $y = \xi f_1 + c^* + d + \eta f_2$ ($\alpha, \beta, \xi, \eta \in C$; $a, b, c, d \in \mathfrak{Y}$), we get

$$(x, y) = \alpha \xi + \beta \eta + (a, d) + (b, c).$$

Now we can associate, to this inner-product, the hermitian innerproduct:

$$\langle x, y
angle = (x, \tilde{y}), \quad (x, y \in V)$$

and the corresponding norm $||x|| = \langle x, x \rangle^{\frac{1}{2}}$, where \tilde{y} denotes the complex-conjugation of y with respect to the real form V_R : $V_R = \{\alpha f_1 + u^* + v + \beta f_2 \in V; \alpha, \beta \in R; u, v \in \mathfrak{F}_R \text{ (see [3])}\}.$

Let us now consider, among linear transformations of V, two special classes of them; namely $\mathfrak{D} = \mathfrak{D}(\mathfrak{B})$ denotes the derivation algebra of \mathfrak{B} , while $\mathfrak{Q} = \mathfrak{Q}(\mathfrak{D})$ the set of all left-translations L(x) in V such that Trace (x)=0. Then $\mathfrak{D} \cap \mathfrak{Q} = \{0\}$, so we get the direct sum: (4) $\mathfrak{G} = \mathfrak{D} \oplus \mathfrak{Q}$ (in gl(V)).

S is closed under the bracket operation in gl(V). In fact we have Proposition 1 (Brown [1]).

(i) [D, L(x)] = L(Dx) for $D \in \mathbb{D}$,

(ii)
$$[L(f_1-f_2), L(u)] = \frac{2}{3}L(u) \text{ for } u \in \mathfrak{Z},$$

(iii)
$$[L(f_1-f_2), L(v^*)] = -\frac{2}{3}L(v^*)$$
 for $v^* \in \mathfrak{F}^*$,

(iv)
$$[L(u), L(v)] = [L(u^*), L(v^*)] = 0 \text{ for } u, v \in \mathfrak{J},$$

(v) $[L(u), L(v^*)] = (u, v)L(f_1 - f_2) + E;$

where $E \in \mathfrak{D}$ and is given by

(3)

$$E = 2 \cdot R\left(-\frac{1}{3}(u, v)e + u \circ v\right) + 2 \cdot [R(u), R(v)]$$

(R denotes the right translation in the algebra \Im ; see [2]).

Thus, \mathfrak{G} is a complex linear Lie algebra which is turned out to be isomorphic to the complex simple Lie algebra of exceptional type E_{τ} [1], while \mathfrak{D} is a subalgebra of \mathfrak{G} and is isomorphic to the complex simple Lie algebra of type E_6 . Furthermore the following holds

Proposition 2 (Brown [1]).

(i) $\mathfrak{D}(V_1)=0, \mathfrak{D}(V_4)=0; \mathfrak{D}(\mathfrak{Z})\subset\mathfrak{Z}, \mathfrak{D}(\mathfrak{Z}^*)\subset\mathfrak{Z}^*;$

(ii) the representation of \mathfrak{D} over $\mathfrak{F} = V_3$ is the irreducible one of \mathfrak{D} in the sense of Chevalley and Schafer [2], and the representation of \mathfrak{D} over $\mathfrak{F}^* = V_2$ is its contragredient one.

4. In this section we describe a symmetric pair of (S) corresponding to the irreducible bounded domain of type (VI); namely a symmetric pair of type EVII (see [6]):

Proposition 3. A symmetric pair $\mathfrak{G} = \mathfrak{R} \oplus \mathfrak{M}$ of type EVII is given by

 $\mathfrak{R} = \mathfrak{D} \oplus \{L(f_1 - f_2)\}, \quad \mathfrak{M} = \{L(u) + L(v^*); u, v \in \mathfrak{J}\},\$

and a complex symmetric pair in the sense of [4] is furnished with

 $\mathfrak{M} = \mathfrak{N}^+ \oplus \mathfrak{N}^-; \ \mathfrak{N}^+ = \{L(u); u \in \mathfrak{J}\}, \ \mathfrak{N}^- = \{L(v^*); v \in \mathfrak{J}\};$

namely \mathfrak{N}^{\pm} are naturally isomorphic to \mathfrak{Z} .

A compact form \mathfrak{G}_u of \mathfrak{G} will be given by the following

Proposition 4. \mathfrak{G}_u is the linear closure over R spanned by the following elements:

 $\sqrt{-1} L(f_1 - f_2), \ \sqrt{-1} L(u^* + u), \ L(u^* - u) \ (u \in \mathfrak{F}_R),$ $\sqrt{-1} R(v) \ (v \in \mathfrak{F}_R), \ E \in \mathfrak{D}_R(\mathfrak{F}),$

where the elements in the second line are generators of a compact form of $\mathfrak{D}(=$ the Lie algebra of type $E_{\mathfrak{g}})$ (see [3]).

Hence, the complex-conjugation ι of \mathfrak{S} over \mathfrak{S}_u can be, restricted on $\mathfrak{M} = \mathfrak{N}^+ \oplus \mathfrak{N}^-$, expressed as below:

 $\iota ; L(u) \rightarrow -L(\tilde{u}^*), L(u^*) \rightarrow -L(\tilde{u}) \ (u \in \mathfrak{Y}).$

Next, we denote by $\tilde{\rho}$ the representation of Brown described in §3 and by ρ_{κ} the restriction of $\tilde{\rho}$ to \Re , then (ρ_{κ}, V) is completely reducible and is decomposed into irreducible components (ρ_i, V_i) $(1 \leq i \leq 4)$ as in (1). In fact, both (ρ_1, V_1) and (ρ_4, V_4) are scalar representations which are explicitly observed from §2, and (ρ_2, V_2) and (ρ_3, V_3) are described in Proposition 2 in §3.

Furthermore we have to show the decomposition (1) of V satisfies the conditions claimed in [4], § 2.

Proposition 5. $\mathfrak{N}^+(V_i) = 0$, $\mathfrak{N}^+(V_i) \subset V_{i-1}$ $(2 \leq i \leq 4)$; $\mathfrak{N}^-(V_i) \subset V_{i-1}$ $(1 \leq i \leq 3)$, $\mathfrak{N}^-(V_i) = 0$.

Thus, as for the notation in [4], we have $p=n_1=1, r=n_2=27$, $n_3=27, n_4=1, q=55$, whence our domain D has to be realized in $\Im \cong V_2^*$, which is a complex vector space of dimension 27.

5. Let $Z = L(u) \in \mathfrak{N}^+$ $(u \in \mathfrak{Z})$. Then $Z^* = -\iota(Z) \in \mathfrak{N}^-$ is equal to $L(\tilde{u}^*)$ $(\tilde{u} = \text{the complex-conjugation of } u$ with respect to \mathfrak{Z}_R). According to the decomposition (1) of V, Z and Z^* are written in the following matrix-forms, taking suitable bases of V_i $(1 \le i \le 4)$:

$$Z = \begin{pmatrix} 0 & Z_1 \\ & Z_2 \\ & & Z_3 \\ & & & 0 \end{pmatrix}, \quad Z^* = \begin{pmatrix} 0 & & & \\ Z_1^* & & & \\ & & Z_2^* & & \\ & & & Z_3^* & 0 \end{pmatrix}.$$

Hence, for $X_1 \in \mathfrak{J}^*$, the adjoint operator $\theta[Z^*, Z]$ for $[Z^*, Z] \in \mathfrak{R}$ (see [4]) is

 $\theta[Z^*, Z]: X_1 \rightarrow (Z_1Z_1^* + Z_1^*Z_1 - Z_2Z_2^*)X_1,$

where the linear mapping $Z_1: \mathfrak{F} \to C$ is identified with an element of \mathfrak{F} , $Z_1^*: C \to \mathfrak{F}^*$ with one of $\mathfrak{F}^*, Z_2: \mathfrak{F} \to \mathfrak{F}^*$ with one of $\mathfrak{F}^* \otimes \mathfrak{F}^*, Z_2^*: \mathfrak{F} \to \mathfrak{F}$

with one of $\Im \otimes \Im$, respectively. Therefore we may consider $Z_1Z_1^* \in C$, $Z_1^*Z_1 \in \mathfrak{gl}(\Im^*)$ and $Z_2Z_2^* \in \mathfrak{gl}(\Im^*)$; in fact, we have

$$\begin{array}{l} Z_1 Z_1^* \colon f_1 \to \| u \|^2 f_1 \quad (\| u \|^2 = (u, \tilde{u})) \\ Z_1^* Z_1 \colon w^* \to (u, \, w) \tilde{u}^* \\ Z_2 Z_2^* \colon w^* \to 4(u \times (\tilde{u} \times w))^* \quad (w^* \in \mathfrak{F}^*), \end{array}$$

where the last two hermitian operators on \mathfrak{F}^* can be identified with those on \mathfrak{F} canonically; namely we may regard them as

 $Z_1^*Z_1: w \to (u, w)\tilde{u} = (\tilde{u} \otimes u^*)w$ $Z_2Z_2^*: w \to 4C_u \cdot C_{\tilde{u}}(w) \quad (w \in \mathfrak{Z}),$

where C_u denotes the left translation in \mathfrak{F} with respect to the crossedproduct: $C_u(v) = u \times v$ for $v \in \mathfrak{F}$. Here we see easily that $C_{\tilde{u}} = C_u^*$ (=the adjoint operator of C_u with respect to the hermitian innerproduct (3) in \mathfrak{F}). Finally we conclude from Theorem 1 in [4] and the above that the canonical model of our symmetric domain D is given by $D = \{u \in \mathfrak{F}; ||u||^2 I_{27} + (\tilde{u} \otimes u^*) - 4C_u \cdot C_u^* < 2I_{27}\}$, where we relpace u by $\sqrt{2} \cdot u$, and then we get the following result:

Theorem. The irreducible bounded symmetric domain D of type (VI) is realized as

$$D = \{ u \in \mathfrak{F}; \| u \|^2 I + \tilde{u} \otimes u^* - 4C_u \cdot C_u^* < I \}.$$

We shall publish in a forthcoming paper the full proofs for all the statements in this note as well as those in the preceding note [3].

References

- [1] R. B. Brown: A minimal representation for the Lie algebra E_7 . Illinois J. Math., **12**, 190-200 (1968).
- [2] C. Chevally and R. S. Schafer: The exceptional simple Lie algebra F_4 and E_6 . Proc. Nat. Acad. Sc., U. S. A., **36**, 137-141 (1950).
- [3] M. Ise: Realization of irreducible bounded symmetric domain of type (V). Proc. Japan Acad., 45, 233-237 (1969).
- [4] ——: On canonical realization of bounded symmetric domain as matrixspaces (to appear in Nagoya Math. J.).
- [5] H. Freudenthal: Beziehungen der E_7 und E_8 zur Oktavenebene. I. Indagations Math., **16**, 218-230 (1954).
- [6] S. Helgason:: Differential Geometry and Symmetric Spaces. Academic Press, New York and London (1962).