186. Realization of Irreducible Bounded Symmetric Domain of Type (VI)

By Mikio Ise
(Comm. by Kunihiko Kodaira, m. J. a., Dec. 12, 1969)

1. This is a continuation of our preceding note [3] which appeared in these Proceedings. We shall present here, without proof, the canonical bounded model of the irreducible bounded symmetric domain of exceptional type (VI) in the sense of [4].

As was pointed out in [4], we need at first to describe explicitly the irreducible representation of the complex simple Lie algebra of type E_{7} which is of the lowest degree, 56. Such a representation was previously discussed by several authors, for instance by H. Freudenthal; however a presentation of that representation which suited our purpose was recently given by R. B. Brown [1] for the first time. His result will be, therefore, briefly reproduced in the following sections $2-3$. As for the notation we refer the reader to [3], [4].
2. Let \mathfrak{F} denote the exceptional simple Jordan algebra as described in [1]-[3]; namely \mathfrak{J} is the totality of the (3.3)-hermitian matrices over the complex Cayley numbers © \mathfrak{C}. The canonical nondegenerate inner-product (u, v) in \mathfrak{F} will be introduced by $(u, v)=$ Trace ($u \circ v$), $\left(u, v \in \mathfrak{F}\right.$) (cf. [1], [2], [5]), for which we consider the dual \mathfrak{S}^{*} of \mathfrak{J} and will identify hereafter \mathfrak{S}^{*} with \mathfrak{J} through this inner-product. Now we introduce a 56 -dimensional complex vector space V by putting (1)

$$
V=V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{4},
$$

where both V_{1} and V_{4} are of 1-dimension and $V_{2}=\mathfrak{S}^{*}, V_{3}=\mathfrak{F}$. The element x of V is then written as

$$
\begin{equation*}
x=\alpha f_{1}+u^{*}+v+\beta f_{2} ; \alpha, \beta \in C, u, v \in \mathfrak{I}, \tag{2}
\end{equation*}
$$

where f_{1}, f_{2} denote, respectively, the generators of V_{1}, V_{4} and $u^{*} \in \mathfrak{S}^{*}$ is defined by $u^{*}(v)=(u, v)$ for all $v \in \mathfrak{J}$. After \mathbf{R}. B. Brown we introduce in V a non-associative algebra structure \mathfrak{B} by the following rule:
i) $f_{i} f_{i}=f_{1}(i=1,2), \quad f_{1} f_{2}=f_{2} f_{1}=0$
ii) $f_{1} u=\frac{1}{3} u, \quad f_{2} u=\frac{2}{3} ; \quad f_{1} v^{*}=\frac{2}{3} v^{*}, \quad f_{2} v^{*}=\frac{1}{3} v^{*}$
iii) $u f_{1}=0, \quad u f_{2}=u ; \quad v^{*} f_{1}=v^{*}, \quad v^{*} f_{2}=0$
iv) $u v^{*}=(u, v) f_{1}, \quad u^{*} v=(u, v) f_{2}$
v) $u v=2(u \times v)^{*}, \quad u^{*} v^{*}=2(u \times v)$
($u, v \in \mathfrak{F}$), where the crossed product $u \times v$ in \mathfrak{J} is given through $(u \times v, w)=3(u, v, w)$ (for $w \in \mathfrak{F}$), the right hand side being the tri-linear form on \mathfrak{J} obtained by linearizing the cubic from on \mathfrak{F} (see, [1], [5]):

$$
\operatorname{det}(u)=\xi_{1} \xi_{2} \xi_{3}+2\left(x_{3} x_{1}, \bar{x}_{2}\right)-\sum_{i=1}^{3} \xi_{i} x_{i} x_{i} \quad(u \in \mathfrak{F}) .
$$

3. In the algebra \mathfrak{B} thus introduced we define the trace-function and the non-degenerate inner-product as follows:

$$
\text { Trace }(x)=\alpha+\beta, \quad(x, y)=\text { Trace }(x y)
$$

Then, if we write $x=\alpha f_{1}+a^{*}+b+\beta f_{2}, y=\xi f_{1}+c^{*}+d+\eta f_{2}(\alpha, \beta, \xi, \eta$ $\in C ; a, b, c, d \in \mathfrak{J})$, we get

$$
(x, y)=\alpha \xi+\beta \eta+(\alpha, d)+(b, c) .
$$

Now we can associate, to this inner-product, the hermitian innerproduct:

$$
\begin{equation*}
\langle x, y\rangle=(x, \tilde{y}), \quad(x, y \in V) \tag{3}
\end{equation*}
$$

and the corresponding norm $\|x\|=\langle x, x\rangle^{\frac{1}{2}}$, where \widetilde{y} denotes the com-plex-conjugation of y with respect to the real form $V_{R}: V_{R}=\left\{\alpha f_{1}+u^{*}\right.$ $+v+\beta f_{2} \in V ; \alpha, \beta \in R ; u, v \in \mathfrak{J}_{R}$ (see [3]) $\}$.

Let us now consider, among linear transformations of V, two special classes of them; namely $\mathfrak{D}=\mathfrak{D}(\mathfrak{B})$ denotes the derivation algebra of \mathfrak{B}, while $\mathfrak{R}=\mathfrak{L}(\mathfrak{D})$ the set of all left-translations $L(x)$ in V such that Trace $(x)=0$. Then $\mathfrak{D} \cap \mathfrak{R}=\{0\}$, so we get the direct sum:

$$
\begin{equation*}
\mathfrak{G}=\mathfrak{D} \oplus \mathfrak{R} \quad(\text { in } \mathfrak{g l}(V)) . \tag{4}
\end{equation*}
$$

\mathfrak{G} is closed under the bracket operation in $\mathfrak{g l}(V)$. In fact we have
Proposition 1 (Brown [1]).
(i) $[D, L(x)]=L(D x)$ for $D \in \mathfrak{D}$,
(ii) $\left[L\left(f_{1}-f_{2}\right), L(u)\right]=\frac{2}{3} L(u)$ for $u \in \mathfrak{S}$,
(iii) $\left[L\left(f_{1}-f_{2}\right), L\left(v^{*}\right)\right]=-\frac{2}{3} L\left(v^{*}\right)$ for $v^{*} \in \mathfrak{F}^{*}$,
(iv) $[L(u), L(v)]=\left[L\left(u^{*}\right), L\left(v^{*}\right)\right]=0$ for $u, v \in \mathfrak{F}$,
(v) $\left[L(u), L\left(v^{*}\right)\right]=(u, v) L\left(f_{1}-f_{2}\right)+E$;
where $E \in \mathfrak{D}$ and is given by

$$
E=2 \cdot R\left(-\frac{1}{3}(u, v) e+u \circ v\right)+2 \cdot[R(u), R(v)]
$$

(R denotes the right translation in the algebra \mathfrak{J}; see [2]).
Thus, ©5 is a complex linear Lie algebra which is turned out to be isomorphic to the complex simple Lie algebra of exceptional type E_{7} [1], while \mathfrak{D} is a subalgebra of \mathfrak{G} and is isomorphic to the complex simple Lie algebra of type E_{6}. Furthermore the following holds

Proposition 2 (Brown [1]).
(i) $\mathfrak{D}\left(V_{1}\right)=0, \mathfrak{D}\left(V_{4}\right)=0 ; \mathfrak{D}(\mathfrak{F}) \subset \mathfrak{F}, \mathfrak{D}\left(\mathfrak{S}^{*}\right) \subset \mathfrak{J}^{*}$;
(ii) the representation of \mathfrak{D} over $\mathfrak{F}=V_{3}$ is the irreducible one of \mathfrak{D} in the sense of Chevalley and Schafer [2], and the representation of \mathfrak{D} over $\mathfrak{F}^{*}=V_{2}$ is its contragredient one.
4. In this section we describe a symmetric pair of © corresponding to the irreducible bounded domain of type (VI); namely a symmetric pair of type EVII (see [6]) :

Proposition 3. A symmetric pair $\mathfrak{G}=\mathfrak{\Re} \oplus \mathfrak{M}$ of type EVII is given by

$$
\mathfrak{R}=\mathfrak{D} \oplus\left\{L\left(f_{1}-f_{2}\right)\right\}, \quad \mathfrak{M}=\left\{L(u)+L\left(v^{*}\right) ; u, v \in \mathfrak{S}\right\},
$$

and a complex symmetric pair in the sense of [4] is furnished with

$$
\mathfrak{M}=\mathfrak{R}^{+} \oplus \mathfrak{R}^{-} ; \mathfrak{N}^{+}=\{L(u) ; u \in \mathfrak{F}\}, \mathfrak{R}^{-}=\left\{L\left(v^{*}\right) ; v \in \mathfrak{F}\right\} ;
$$

namely $\mathfrak{R}^{ \pm}$are naturally isomorphic to \mathfrak{F}.
A compact form \mathscr{S}_{u} of $\mathscr{H S}_{5}$ will be given by the following
Proposition 4. $\mathfrak{\oiint}_{u}$ is the linear closure over R spanned by the following elements:

$$
\begin{aligned}
& \sqrt{-1} L\left(f_{1}-f_{2}\right), \sqrt{-1} L\left(u^{*}+u\right), L\left(u^{*}-u\right) \quad\left(u \in \mathfrak{J}_{R}\right), \\
& \sqrt{-1} R(v)\left(v \in \mathfrak{J}_{R}\right), E \in \mathfrak{D}_{R}(\mathfrak{F}),
\end{aligned}
$$

where the elements in the second line are generators of a compact form of $\mathfrak{D}\left(=\right.$ the Lie algebra of type $\left.E_{6}\right)$ (see [3]).

Hence, the complex-conjugation ς of \mathfrak{F} over \mathscr{G}_{u} can be, restricted on $\mathfrak{M}=\mathfrak{N}^{+} \oplus \mathfrak{N}^{-}$, expressed as below:

$$
\iota ; L(u) \rightarrow-L\left(\tilde{u}^{*}\right), L\left(u^{*}\right) \rightarrow-L(\widetilde{u})(u \in \mathfrak{F})
$$

Next, we denote by $\tilde{\mu}$ the representation of Brown described in $\S 3$ and by ρ_{K} the restriction of $\tilde{\rho}$ to \AA, then (ρ_{K}, V) is completely reducible and is decomposed into irreducible components (ρ_{i}, V_{i}) $(1 \leqslant i \leqslant 4)$ as in (1). In fact, both (ρ_{1}, V_{1}) and (ρ_{4}, V_{4}) are scaler representations which are explicitly observed from § 2, and (ρ_{2}, V_{2}) and (ρ_{3}, V_{3}) are described in Proposition 2 in § 3.

Furthermore we have to show the decomposition (1) of V satisfies the conditions claimed in [4], § 2.

Proposition 5. $\mathfrak{R}^{+}\left(V_{1}\right)=0, \mathfrak{R}^{+}\left(V_{i}\right) \subset V_{i-1}(2 \leqslant i \leqslant 4) ; \mathfrak{M}^{-}\left(V_{i}\right) \subset V_{i-1}$ $(1 \leqslant i \leqslant 3), \mathfrak{R}^{-}\left(V_{4}\right)=0$.

Thus, as for the notation in [4], we have $p=n_{1}=1, r=n_{2}=27$, $n_{3}=27, n_{4}=1, q=55$, whence our domain D has to be realized in $\mathfrak{F} \cong V_{2}^{*}$, which is a complex vector space of dimension 27.
5. Let $Z=L(u) \in \mathfrak{R}^{+}(u \in \mathfrak{F})$. Then $Z^{*}=-\iota(Z) \in \mathfrak{R}^{-}$is equal to $L\left(\widetilde{u}^{*}\right)\left(\widetilde{u}=\right.$ the complex-conjugation of u with respect to $\left.\tilde{J}_{R}\right)$. According to the decomposition (1) of V, Z and Z^{*} are written in the following matrix-forms, taking suitable bases of $V_{i}(1 \leqslant i \leqslant 4)$:

$$
Z=\left(\begin{array}{ccccc}
0 & Z_{1} & & \\
& & Z_{2} & \\
& & & Z_{3} \\
& & & 0
\end{array}\right), \quad Z^{*}=\left(\begin{array}{llll}
0 & & & \\
& Z_{1}^{*} & & \\
& & & \\
& Z_{2}^{*} & & \\
& & & Z_{3}^{*}
\end{array}\right)
$$

Hence, for $X_{1} \in \mathfrak{S}^{*}$, the adjoint operator $\theta\left[Z^{*}, Z\right]$ for $\left[Z^{*}, Z\right] \in \mathfrak{R}$ (see [4]) is

$$
\theta\left[Z^{*}, Z\right]: X_{1} \rightarrow\left(Z_{1} Z_{1}^{*}+Z_{1}^{*} Z_{1}-Z_{2} Z_{2}^{*}\right) X_{1}
$$

where the linear mapping $Z_{1}: \mathfrak{J}^{*} \rightarrow C$ is identified with an element of \mathfrak{J}, $Z_{1}^{*}: C \rightarrow \mathfrak{J}^{*}$ with one of $\mathfrak{J}^{*}, Z_{2}: \mathfrak{F} \rightarrow \mathfrak{S}^{*}$ with one of $\mathfrak{J}^{*} \otimes \mathfrak{S}^{*}, Z_{2}^{*}: \mathfrak{F} \rightarrow \mathfrak{J}$
with one of $\mathfrak{F} \otimes \mathfrak{F}$, respectively. Therefore we may consider $Z_{1} Z_{1}^{*} \in C$, $Z_{1}^{*} Z_{1} \in \operatorname{gl}\left(\mathfrak{S}^{*}\right)$ and $Z_{2} Z_{2}^{*} \in \mathfrak{g l}\left(\mathfrak{S}^{*}\right)$; in fact, we have

$$
\begin{aligned}
& Z_{1} Z_{1}^{*}: f_{1} \rightarrow\|u\|^{2} f_{1} \quad\left(\|u\|^{2}=(u, \tilde{u})\right) \\
& Z_{1}^{*} Z_{1}: w^{*} \rightarrow(u, w) \tilde{u}^{*} \\
& Z_{2} Z_{2}^{*}: w^{*} \rightarrow 4(u \times(\tilde{u} \times w))^{*} \quad\left(w^{*} \in \mathfrak{S}^{*}\right),
\end{aligned}
$$

where the last two hermitian operators on \mathfrak{F}^{*} can be identified with those on \mathfrak{J} canonically ; namely we may regard them as

$$
\begin{aligned}
& Z_{1}^{*} Z_{1}: w \rightarrow(u, w) \tilde{u}=\left(\tilde{u} \otimes u^{*}\right) w \\
& Z_{2} Z_{2}^{*}: w \rightarrow 4 C_{u} \cdot C_{\tilde{u}}(w) \quad(w \in \mathfrak{I}),
\end{aligned}
$$

where C_{u} denotes the left translation in \mathfrak{F} with respect to the crossedproduct: $C_{u}(v)=u \times v$ for $v \in \mathfrak{J}$. Here we see easily that $C_{\tilde{u}}=C_{u}^{*}$ (=the adjoint operator of C_{u} with respect to the hermitian innerproduct (3) in \mathfrak{J}). Finally we conclude from Theorem 1 in [4] and the above that the canonical model of our symmetric domain D is given by $D=\left\{u \in \mathfrak{F} ;\|u\|^{2} I_{27}+\left(\tilde{u} \otimes u^{*}\right)-4 C_{u} \cdot C_{u}^{*}<2 I_{27}\right\}$, where we relpace u by $\sqrt{2} \cdot u$, and then we get the following result:

Theorem. The irreducible bounded symmetric domain D of type (VI) is realized as

$$
D=\left\{u \in \tilde{J} ;\|u\|^{2} I+\widetilde{u} \otimes u^{*}-4 C_{u} \cdot C_{u}{ }^{*}<I\right\} .
$$

We shall publish in a forthcoming paper the full proofs for all the statements in this note as well as those in the preceding note [3].

References

[1] R. B. Brown: A minimal representation for the Lie algebra E_{7}. Illinois J. Math., 12, 190-200 (1968).
[2] C. Chevally and R. S. Schafer: The exceptional simple Lie algebra F_{4} and $E_{6 .}$ Proc. Nat. Acad. Sc., U. S. A., 36, 137-141 (1950).
[3] M. Ise: Realization of irreducible bounded symmetric domain of type (V). Proc. Japan Acad., 45, 233-237 (1969).
[4] --: On canonical realization of bounded symmetric domain as matrixspaces (to appear in Nagoya Math. J.).
[5] H. Freudenthal: Beziehungen der E_{7} und E_{8} zur Oktavenebene. I. Indagations Math., 16, 218-230 (1954).
[6] S. Helgason:: Differential Geometry and Symmetric Spaces. Academic Press, New York and London (1962).

