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183. Elliptic Modular Surfaces. II

By Tetsuji SHIODA
Department of Mathematics, University of Tokyo,

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1969)

In the first part [6], we have introduced a special class of elliptic
surfaces called elliptic modular surfaces. In this part II, we shall
indicate the proof of the theorem announced in [6] (Theorems 3.1 and
5.4). A reformulation and a few remarks will be given in Section 6.

The author wishes to thank Professor Shimura who kindly gave
him various remarks.

Notation. We use the same notations as in [6]. In particular, F
always denotes a torsion-free subgroup of finite index of SL(2, Z)
(except in Remark 6.6).

3. The group of sections. In this section we shall prove
Theorem 3.1. An elliptic modular surface has only a finite

number of sections over the base curve.
We denote by/ the index of the subgroup F(_+ 1} in SL(2, Z), and

by tx (or t) the number of cusps of the first (or second) kind; put
t-t/t.. Then the genus g of the curve ---lr is given by the
formula 2g-- 2 / t--,u/6. The index / is clearly equal to the order
of the meromorphic function J on z/, the functional invariant of the
elliptic modular surface Br. Hence, from Theorem 12.2 of [1], we
can compute the arithmetic and geometric genus of Br.

Lemma 3.2. p,=/12-Ft./2--1,
pq--2g--2+ t--t/2.

Comparing Lemma 3.2 with Theorem 1.2 and Corollary 1.4, we get
Lemma 3.3. r-- 0 and r’- 2pq.
Thus the group H(zl, f2(Bo)) is of rank 0, i.e., finite. By

considering the exact sequence ([1], Section 11)
(***) O--[2(Bo)-OI2(B)--Q--*O,
where the quotient Q is a sheaf of finite groups with the support on
the finite set A--z/’, we conclude that the group H(I, 2(B)) is also
finite, which completes the proof of Theorem 3.1.

Example 3.4. For the elliptic modular surface B(N) for level
N (N>_3) (cf. Example 2.1---where we used the above Lemma 3.3), we
can show that the group of sections of B(N) is isomorphic to the finite
group (Z/NZ). Moreover any two distinct sections do not meet each
other. When N=3, B(3) is a rational surface and the 9 sections are
mutually disjoint exceptional curves of the first kind (cf. [6a]. p. 464).
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For N>_4, the surfaces B(N) are non-rational and minimal; B(4) is a
K3 surface mentioned at the end of Introduction of [6].

Remark. :.5. The number r’ is, by definition, the Z-rank of the
image i*H(z], G) in Hl(z], (C)()), the latter being a complex vector space
of dimension pq ([1], p. 15). In view of the relation r’=-2pq of Lemma
3.3, it is natural to ask whether or not i’Hi(A, G) is a lattice in
H(, (0). With this question in mind, we observed that the geometric
genus pq is equal to the dimension of the space of F-cusp orms of
weight 3, which suggested the possible connection o our problem with
Shimura’s theory [3]. Cf. Section 5.

4. Parabolic cohomology and cusp forms. Let F be, as before,
a torsion-free subgroup of finite index o SL(2, Z). (In particular F
does not contain the element --1.) Following Shimura [3], we define
parabolic cohomology groups of F as ollows. The group acting on

Z (rom the let), an integral parabolic cocycle o F is a map of F
into Z satisfying the 2 conditions"

i) (aa’) (a) + a(a’) for a, a’ e F
ii) (y) e (y-l)Z for parabolic y of F.

A eoboundary is a eoeyele of the form" (a)-(a--l)o for all a in
F with a fixed 0 in Z. The corresponding eohomology group is
denoted by H(F, Z). Replacing Z by the real numbers R in the
above, we get H=(F, R) and a canonical homomorphism c of H(F, Z)
into H,(F, R). The following is a special ease of Proposition 1, 3
of [3].

Lemma 4.1. The image of H(F, Z) is a lattice in the real vector
space H(F, R).

Next we denote by (F) the space o F-cusp forms of weight m.
There is a hermitian metric on (F) called the Petersson metric" for

f, g in (F),

(f g)--.[rf(z)g(z)y-dxdy,_ z--x+ iy .
We are interested in the case where m=3. For each f in (F),

consider the "period" of the vector-valued differential form (z)f(z)dz1

x(a) 1o

where z0 is a base point in . is a C-valued parabolic eoeyele o .
We define 9(f) as the eohomology class in H,(F,) otaii the
real oeyle ge (). By a slight modifiCatio o the argument in 5,
[], one can prove

Lemma 4.. 9 is an isomorphism o (F) onto Hk(F, ).
Reatk 4.3. Combii Lemmas 4.1 and 4.2, one gets a complex
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torus attached to cusp forms of weight 3. In even weight case,
Shimura [3] shows that these complex tori have structure of abelian
varieties, by considering the imaginary part of the Petersson metric.
This method cannot be applied to our case. But according to Shimura,
it can be shown that our complex tori also have structure of abelian
varieties for certain F, by considering their endomorphism algebras.

5. Main results. Let B be the elliptic modular surface attached
to F. The line bundle , defined in Section 1 [6], has the following
description for our B. The group F acts on the product C of the
upper half plane and the complex plane by

’" (z, )(.z, (cz+ d)-), - ( bd) e F.

Then the restriction of to the open set ’=F\ is isomorphic to the
quotient F\( C) of C by F (cf. [1], Section 11). Moreover, as is
well known, the sheaf G() o germs of sections of the canonical bundle
on is isomorphic to the sheaf of cusp orms o weight 2. This

suggests
Lemma 5.1. There is a canonical isomorphism (over C)"

H(, 0(-- O) -(F).We identify the two spaces by the canonical isomorphism.
By the duality theorem on a curve, there is a C-bilinear non-

degenerate pairing"
H(I, 0(--f))x H’(I, O(f))-C, (f $)(f

On the other hand, the space a(F) of cusp forms of weight 3 is self-
dual (over R) with respect to the Petersson metric. Hence

Lemma 5.2. There is a sesqui-linear isomorphism

+ H’(I, O(f))__%(F),
such that (f, $)= 4(f, ($)) for all f in 3(F).

Combining the above with the results in the preceding sections,
we get the following diagram"

HI(I, G) Hi(z/, O(f))

H(F, z9 H(F, R)

(Lemma 5.2)

(Lemma 4.2)

(image lattice; Lemma 4.1)
Theorem 5.3. There is an isomorphism y of H(, G) onto

Hr(F, Z2), which makes the above diagram commute.
We have explicitly constructed the isomorphism ] in terms of

standard generators of the Fuchsian group F. It would presumably
be the canonical isomorphism coming from the spectral sequence
connecting the cohomologies of a discontinuous group with the
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cohomologies of the quotient space. From the exact sequence (**) of
Section 1, we obtain

Theorem 5.4. For an elliptic modular surface B, the group
H(A,t(Bo)) is isomorphic o the product of the complex torus
H(A, O())/i*H(l, G) and the finite group H(z/, G).

As for the group H(A, tg(B)), we see from the exact sequence
(***) of Section 3 that it is a quotient of H(A, tO(B0)) by a finite group.
Thus H(A, tO(B)) is also a product of a complex torus and a finite
group. According to a general result of M. Artin quoted in [2], the
torsion subgroup of H(A, 9(B)) is divisible (cf. Lemma 6.2 below).
Hence

Theorem 5.5. For an elliptic modular surface B, the group
H(I, 9(B)) has a structure of a complex torus of dimension pq.

6. Consequences and remarks. Given an elliptic modular
surface B--Br, we denote by (I’)--(J, G) the family of elliptic
surfaces over Ar having the same functional and homological
invariants as Br. In general, the family if(J, G) modulo 9(B)
equivalence is parametrized by the cohomology group H(A, t(B)) so
that algebraic surfaces in that family correspond to the elements of
finite order in H(A, tg(B)) (see [1] Theorems 10.1 and 11.5). As an
immediate consequence of Theorem 5.5, we have the following result,
which answers Kodaira’s question (cf. Introduction) in our special
case

Corollar 5.1. Algebraic surfaces are dense in the family (F)
containing an elliptic modular surface Br.

In general, let K be the function field of the algebraic curve zl.
Given an elliptic surface B over A with a global section, its generic
fibre E is an elliptic curve defined over K with a K-rational point. We
denote by I]i(zl, E) the Tate-afarevi5 group; it is the group of locally
trivial principal homogeneous spaces for E over K (cf. [5], 3).

Lemma 5.2. The group IK(A, E) is isomorphic to the torsion
subgroup of H(zl, t(B)).

In the case where B--Br is the elliptic modular surface attached
to F, K--Kr is the field of F-automorphic functions. We call the
generic fibre Er of Br over /r the elliptic curve over the field Kr.
Then we can restate our main results in the following way.

Theorem 5.:. Let Er be the elliptic curve over the field" Kr of
F-automorphic functions. Then

(i) Er has only a finite number of Kr-rational points.
(ii) The group Iil.(At, Er) is (isomorphic to) the group of division

points of a pq-dimensional complex torus Tr. In particular, IK(z/r,Er)
=,(Q/Z)a.
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Remark 6.4. If we replace the word "complex torus" by "abelian
variety" in (ii) (cf. Remark 4.3) Theorem 6.3 is of algebraic nature.
It will be not too hard to show the validity of the statement (i) (with
a proper modification) in positive characteristic case. We wonder if
the statement (ii) also holds in such a case.

Remark 6.5. One might expect that, in analogy to Theorem 6.3,
the division points of Shimura’s abelian variety attached to F-cusp
forms of even weight m should be related to the algebraic principal
homogeneous spaces for the abelian variety E(r-), the (m-2)-f.old
product of Er with itself, over Kr. We can see however that this is
not the case. In fact, the group of locally trivial algebraic principal
homogeneous spaces for E(r-) is isomorphic to the group of division
points of the product T(r-) of our complex torus Tr in Theorem 6.3.
It would be interesting to seek some interpretation of Simura’s abelian
varieties rom our viewpoint (cf. [4], p. 292).

Remark 5.6. The idea in this paper can be applied to some other
cases. For instance, let F be a Fuchsian group obtained from an
indefinite division quaternion algebra over Q; assume that is torsion-
free. Then it is known that z/--F\ is a compact Riemann surface
and that there is an abelian scheme B over A of fibre dimension 2.
By defining a vector bundle (of rank 2) and a sheaf G over A in a
similar way, we can prove analogues of Theorems 3.1 and 5.4. Note
that, in this case, B-B---Bo. If we assume Lemma 6.2, i.e., Ill(A, A)
"HI(A, (B))tor, A being the generic fibre of B over z/, then it would
follow that the group Ill(A, A) is not divisible in general for an abelian
variety of dimension >_ 2 over a function field.
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