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10. Characterizations of Strongly Regular Rings

By S. LAJos*® and F. SzAsz**

(Comm. by Kinjir6 KUNUGI, M. J. A., Jan. 12, 1970)

In this note by a ring we shall mean a not necessarily commutative
but associative ring and by radical of the ring we mean the Jacobson
radical (see N. Jacobson [5]). Following J. von Neumann [13] we
shall say that the ring A is regular if, for every element a of A, there
exists an element x in A such that a=axa. It is well known that the
class of regular rings plays a very important role in the abstract
algebra, in the theory of Banach algebras (cf. C. E. Rickart [15]) and
in the continuous geometry (see J. von Neumann [14]). An interesting
result is that the ring of all linear transformations of a vector space
over a division ring is a regular ring. Some ideal-theoretical charac-
terizations of regular rings have been obtained by L. Kovacs [7] and
J. Luh [11].

A ring A is called strongly regular if to every element a of A
there exists at least one element x in A such that a=a?*r (See R. F.
Arens and I. Kaplansky [2]). It can be seen that every strongly
regular is regular (see T. Kand6 [6]). Following E. Hille [4] a ring
A is said to be a two-sided ring if every one-sided (left or right) ideal
of A is a two-sided ideal of A. Evidently every division ring and
every commutative ring is a two-sided ring. It is easy to see that
there exists two-sided ring which is neither commutative nor a division
ring. Two-sided rings called as duo rings have formerly been in-
vestigated by E. H. Feller [3], G. Thierrin [17] and S. Lajos [8].
Thierrin using the classical method of N. H. McCoy [12] has verified
that every two-sided ring can be represented as a subdirect sum of
subdirectly irreducible two-sided rings.

First named author has recently obtained some ideal-theoretical
characterizations of two-gided regular rings which are analogous to
his characterizations of semilattices of groups (see S. Lajos [8]-[10]).
S. Lajos’ earlier criteria are contained in the following result which
will be stated here with no proof.

Theorem. For an associative ring A the following eleven con-
ditions are equivalent with each other:

(I) A isa strongly regular ring.
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( I ) LNR=LR for every left ideal L and for every right ideal
R of A.

(III) The intersection of any two left ideals is equal to their
product and the same for right ideals too.

(IV) LNI=LI and RNI=IR for every left ideal L, for every
right ideal R and, for every two-sided ideal I of A.

( V) A<sasubdirect sum of division rings.”

(VI) A s aregular ring with no nonzero nilpotent elements.

(VII) A is a two-sided regular ring.

(VIII) The intersection of any two left ideals coincides with their
product.

( IX ) Theintersection of any two right ideals coincides with their
product.?

( X ) LNI=LI holds for every left ideal L and for every two-
sided ideal I of A.

( XI) RNI=IR holds for every right ideal R and for every two-
stded tdeal I of A.

Remark. We mention a nontrivial example for a two-sided
regular ring which is neither commutative nor a division ring. Let A
be the direct sum of two non-commutative division rings. Then A
obviously has the wished properties.
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