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Department of Mathematics, Aichi University of Education

(Comm. by Kinjir8 KUNU(I, M. Z. )., Jan. 12, 1970)

1. Introduction. Let A(x, y;$) and B(x, y; ) be uniformly
elliptic polynomials) in $ e R and in ] e R", respectively, with coef-
ficients in C(2) and g(x) be a real valued unction in C(tg), not
depending on y, where tO is an open set o R R. In this paper, we
consider the hypoellipticity) of linear partial differential operators of
the form
( 1 P-A(x, y;Dx)+ g(x)2B(x, y;Dv),
where Dx-(DI,...,D) with D--i3/3x and Dv--(DI, ..., Dv,)
with Dv=--i3/3y (i= /--1 ). It is well known that if g(x) vanishes
at no point of /2 operator (1) is hypoelliptic in tO. Indeed, we can
immediately see that it is formally hypoelliptic there. For operator
(1) in which g(x) may vanish, we can prove

Theorem. Suppose in operator (1) that A and B are uniformly
elliptic in 9 and the coefficients of A are not dependent on the variable
y and that there exists a multi-index a=(a,.., a) N) such that

D"a vanishes at no point of [2. Then the differentialDg=DI
operator P of form (1) is hypoelliptic in 9.

This is motivated by the result of Dr. T. Matsuzawa (unpublished)
that the operators on the (x y)-plane" D + xr) (1, m--1, 2,...y

k=0, 1, ...) are hypoelliptic in the plane (see [4]). One of the most
important keys to the proof of Theorem is the inequality (H) which is
stated in 2 and is one of the inequalities proved by HSrmander [2].

In 2 we prepare some lemmas and propositions, with the aid of
which the proof of Theorem will be accomplished in 3.

2. Preliminaries. Throughout this section we assume that
A, B and g have the same meaning as in Theorem and that the degrees
o A and B are 21 and 2m (1, re=l, 2, ...), respectively. First define
norm [[[ ][[ and its dual norm ][[ [[[’ by

[[[u[[I-[[vu[I2+llgvul[+[lu[I ,[[[v[[[’- sup [(v,u}[,

1) The A(x, y;) is called uniformly elliptic in $, if there exists a positive
constant c such that ReAo(x,y;)>_cIl for all eR and all (x,y)et2 where 21
is the degree of A and A0 denotes the leading part of A.

2) We say that P is hypoelliptic in 9, if every u e _q)’(tg) is infinitely differ-
entiable in every open set where Pu is infinitely differentiable.

3) We denote by N the set of non-negative integers.
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where norm is the usual L-norm on 9, (v, u is the value of
v e _q)’(tg) at u,. IIDull= , IIDul] ( e N, .]-l+ +-l) and

[IDu[I- IiDul (fl e Y", ]fll= fl + + ft,=m). Let e C(D).

Clearly we have

Let L, 1 + $ D+ D for $ > 0, and defind Lv as the inverse

Fourier transform o: {1+( ::+ : )}-’($, ). (($, )is the

Fourier transform o v). It then ollows immediately that, :or every
v e L(9), e N and e N,,

21 2m
By using (3) we can verify
Lemma 1. For any compact set K9, there exists a positive

constant C) such that

Lemma 2. Let l,..., In be integers 1. Then it follows that

the iee ofief tfof J() o 1+ ith reeet to

R i iitel giffefetiabe eeet t the ofigi d th thefe
exists a positive constant a and a function w(x) which is defined, in
]xO and is bounded in xe for every 0 as well as its derivatives,
such that J(x)-exp (-a]x)w(x) for ]x]O.

The proof will be completed by induction on n.
Now we return to the operator P. Using the Grding inequality,

we can assert that, for every compact set K 9,
( 4 ]]u]]]K C(]]]Pu]]’ + u ), u e C(K).
If we habitually introduce norm ] or real s which is defined by

]]u]=.[.[(1+$+]])]($, )d$d, it then follows rom the assump-

tion on g(x) that the inequality

= =
is valid or some positive number 1 depending only on g(x) and K
(for the proof see [2]). From (H) we can derive

4) From now on, letters C, C’ stand for positive constants depending on

compact set in 9.
5) By "K we denote the set of u e g)’(tg) with support K.
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( 5 ) Ilulle <_ C[[lu[ll, u e C(K).
In the below we shall state three propositions.
Proposition 1. The P is partially hypoelliptic in x, that is, every

u ’(Y2) is regular in x on every open set where Pu is regular in x
(for the notion "regular in x" see Grding-Malgrange [1]).

Proof. We have only to recall that the P is just one of operators
introduced by Mizohata [5] (cf. Kato [3]).

Proposition 2. Le K be any compact set in . Then it follows
that every v e L(9) such that D-v<, gD v <, Pv
and supp Iv]K satisfies [[[v[< and belongs to H" with some posi-
tive number e 1 depending only on g(x) and K.

Proof. Let K0 be a compact set in 9. By U, we denote the set
of u e L(9) such that {]Du[<, ][Du]] < and supp [u]K0. From
(4) and (5) we can easily obtain the inequality
( 6 ) ]u]].g C][]u[[g C’ ([[[Pu]]’ + u]), u e Uo.

Now let v be an element of L(9) such that supp [v]cK, ]D
<, I]gD-v]]< and Pv]’<. For >0, we set v--zLTv,
where Z e C(9) such that 0g Zg 1 and Z-1 in a neighborhood w of K.
Putting supp [z]-K0, we have v e U0. So that (6) is valid for
If we assume the existence of a number M such that
7 ) Pv]]]’gM for all

it then follows from (6) that ]]]v]]]< and ]]v],< . Thus we have
only to prove (7). In w we have LPv=Pv+ [L, P]v, provided
[X, Y] XY-- YX. Accordingly,

Pv-L[Pv + L[[L, P]v+ L[h,
where h-0 in w, supp[h]supp[z] and h=PLzL[v out of w.
By (2) and Lemma 1 we have ]]L[Pv]]’g C]Pv]]]’ and ]]]L;Xhl]’

I E(x, y) denotes the inverse Fourier transform of (1 + + r-,
j= = /

we have

.-/v(x’, ,’dx’d
With the aid of Lemma 2, we can assert’that if (x, y)e w, any deriva-
tive of L[v decreases faster than any power of when 0. Hence
we have h]0 as 0. Finally we can deduce from (2) and (3)

This completes the proof. Q.E.D.
We denote by H(s, t) (s, t real) the set of u e 3’(R+.) such that

It is clear that H’cH(e, e) for e k0.
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Proposition 3. If v is in H(e, e)N"(t9) for a positive number
e

_
1 and satisfies IIvlll c, it then follows that

( 8 )x D"v e H(e/2I"1, e/2I"’) for
( 8 ) D(gv) e H(e/2TM e/2) for

Proof. First of all we note that, or real
( 9 ue H(O--1,)H(1, O) ue H(0/2, /2).
Indeed, using the Schwarz inequality, we have

ull/,/:f(1 +15 9(-’/(1+1 )/ l(1+l )/ ld$d

(fff(1 +l$ )-(1 +l I)lld$d) / (ff(1 I)l ldSd)/.
We shall prove (8) and (8)v by induction on I1 and Il respectively.
It o]]ows rom the assumption on v that (8) is valid or I1-o and
that Dv L or I1/. Hence we have Dv H(1, 0) or I1/-1.
Suppose that (8) is valid or laIg/-2. Then

D;v e H(e/2"---l, /2"-1) H(1, 0),
or lgIaIgl-1. Using (9), we can conclude (8). By the same
argument as above we can assert (8)v.

3. Proof of Theorem. Let u e ’() such that Pu C() and

90 be an arbitrary open subset o such that 90c9. From Propo-
sition I it follows that, or any integer n0 satisfying 2n l-1, there
exists an integer sg 0 such that, or every C{(o), 9u H(2n, s),

"’(0) (for the existence o such s, see [1]). Then, puttingi.e., u --zoo

t--s--m+ 1, we have, or every e C{(0),
EtD(u) L or I1(10),
ED(gu) L or Ilm--1,

where Etv denotes the inverse Fourier transform
Using (10)t we can derive from (2) the inequality IIIP(E,(u))III’
for a]] 9, e C(90). This, together with Propositions 2 and 3,
quarantees (10)t+ with d-min(e/2t, e/2). We can continue in this
ashion and obtain (10)n_. Thus we have u H(2n, s) H(O, 2n-- s)
or every e C{(0), rom which, by the similar argument as in (9),
follows u e Hoo (0) This completes the proo of Theorem, since n
and 0 are arbitrary.
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