32. L^{p}-theory of Pseudo-differential Operators

By Hitoshi Kumano-go*) and Michihiro Nagase**)

(Comm. by Kinjirô Kunugi, m. J. A., Feb. 12, 1970)

Introduction. The L^{2}-theory of pseudo-differential operators has been studied in many papers, but we know very few papers which are concerned with L^{p}-theory. We say $g(x, \xi) \in S_{\rho, \dot{j}}^{m}, 0<\rho \leqq 1,0 \leqq \delta$, when $g(x, \xi) \in C^{\infty}\left(R_{x}^{n} \times R_{\xi}^{n}\right)$ and for any α, β, there exists a constant $C_{\alpha, \beta}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} g(x, \xi)\right| \leqq C_{\alpha, \beta}\langle\xi\rangle^{m+\delta|\alpha|-\rho|\beta|}
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$ are multi-indices whose elements are non-negative integers, $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$, and $\partial_{x_{j}}=\partial / \partial x_{j}, \partial_{\xi_{j}}=\partial / \partial \xi_{j}$, $j=1, \cdots, n$,

$$
\partial_{x}^{\alpha}=\partial_{x_{1}}^{\alpha_{1}} \cdots \partial_{x_{n}}^{\alpha_{n}}, \quad \partial_{\xi}^{\beta}=\partial_{\xi_{1}}^{\beta_{1}} \cdots \partial_{\xi n_{n}^{\beta_{n}}}, \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{n},
$$

$|\beta|=\beta_{1}+\cdots+\beta_{n}$. For a pseudo-differential operator defined by the symbol of class $S_{\rho, \delta}^{m}$, the L^{2}-boundedness of the form $\left\|g\left(X, D_{x}\right) u\right\|_{s}$ $\leqq C\|u\|_{m+s}$ was proved by Hörmander [2] and Kumano-go [4] in the case $0 \leqq \delta<\rho \leqq 1$.

In the present paper we shall study the general L^{p}-theory for pseudo-differential operators of class $S_{1, \delta}^{m}$ in the case: $0 \leqq \delta<1$ and $1<p<\infty$. Recently for operators of class $S_{1, \delta}^{0}$, Kagan [3] proved the L^{p}-boundedness: $\left\|p\left(X, D_{x}\right) u\right\|_{L^{p}} \leqq C\|u\|_{L^{p}}$ for $1<p \leqq 2$. Applying the theory in Kumano-go [5], we first prove the inequality $\left\|g\left(X, D_{x}\right) u\right\|_{p, s}$ $\leqq C\|u\|_{p, m+s}$ for any real s and $1<p<\infty$ (which solves a problem of Hörmander in [2], p. 163, for the typical case $\rho=1$), and prove the theorems: the generalized Poincaré inequality, the invariance of the space $H_{p, s}$ under coordinate transformation and the a priori estimate for elliptic operators.

1. Definitions and fundamental lemmas.

We shall use the following notations:

$$
\mathcal{S}=\left\{u(x) \in C^{\infty}\left(R^{n}\right) ; \lim _{|x| \rightarrow \infty}|x|^{m}\left|\partial_{x}^{\alpha} u(x)\right|=0 \text { for any } m \text { and } \alpha\right\} .
$$

\mathcal{S}^{\prime} denotes the dual space of \mathcal{S}. For $u \in \mathcal{S}$, we define the Fourier transform of u by $\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x, x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}$. For any real s we define an operator $\left\langle D_{x}\right\rangle^{s}: \mathcal{S} \rightarrow \mathcal{S}$ by

$$
\left\langle D_{x}\right\rangle^{s} u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi}\langle\xi\rangle^{s} \hat{u}(\xi) d \xi .
$$

[^0]We define the norm $\|u\|_{p, s}$ by

$$
\|u\|_{p, s}=\left\{\int\left|\left\langle D_{x}\right\rangle^{s} u(x)\right|^{p} d x\right\}^{1 / p} .
$$

The operator $\left\langle D_{x}\right\rangle^{s}: \mathcal{S} \rightarrow \mathcal{S}$ can be uniquely extended to the operator $\left\langle D_{x\rangle}\right\rangle^{\circ}: S^{\prime} \rightarrow S^{\prime}$ by

$$
\left\langle\left\langle D_{x}\right\rangle^{s} u, v\right\rangle=\left\langle u,\left\langle D_{x}\right\rangle^{s} v\right\rangle \text { for } u \in \mathcal{S}^{\prime}, v \in \mathcal{S} .
$$

Definition 1.1. For $1<p<\infty$ and $-\infty<s<\infty$ we define the Sobolev space $H_{p, s}$ by $H_{p, s}=\left\{u \in \mathcal{S}^{\prime} ;\left\langle D_{x}\right\rangle^{s} u \in L^{p}\left(R^{n}\right)\right\}=\left\{u \in \mathcal{S}^{\prime} ; u\right.$ $=\left\langle D_{x}\right\rangle^{-s} u_{o}$ for some $\left.u_{o} \in L^{p}\left(R^{n}\right)\right\}$.

By the definition we can easily see that $H_{p, s}$ is a Banach space provided with the norm $\|u\|_{p, s}$, and \mathcal{S} is dense in $H_{p, s}$.

Definition 1.2. For $g(x, \xi) \in S_{p, \dot{\delta}}^{m}$ we define an operator $g\left(X, D_{x}\right)$ by $g\left(X, D_{x}\right) u(x)=(2 \pi)^{-n} \int e^{i x \cdot \xi} g(x, \xi) \hat{u}(\xi) d \xi$ for $u \in \mathcal{S}$.

It is clear that $g\left(X, D_{x}\right): \mathcal{S} \rightarrow \mathcal{S}$ is linear. In what follows we assume that $0 \leqq \delta<1$ and $1<p<\infty$. For $g(x, \xi) \in S_{1, \delta}^{m}$ we use a notation $|g|_{l}=|g|_{l, m}$ defined by

$$
|g|_{l, m}=\operatorname{Max}_{|\alpha+\beta| \leq l} \sup _{x, \xi}\left\{\left|\partial_{x}^{x} \partial_{\xi}^{\xi} g(x, \xi)\right|\langle\xi\rangle^{-(m+\delta|\alpha|-|\beta|}\right\}<\infty .
$$

Lemma 1.1 (Kagan [3]). Assume that $1<p \leqq 2$. For any $g(x, \xi)$ $\in S_{1,8}^{o}$ there exists a constant C such that
(1.1) $\quad\left\|g\left(X, D_{x}\right) u\right\|_{p, 0} \leqq C\|u\|_{p, 0}$ for $u \in \mathcal{S}$, where C depends only on p and $|g|_{2,0}$ for sufficiently large l.

Lemma 1.2 (Kumano-go [5]). i) For two symbols $g_{j}(x, \xi) \in S_{1, b^{j}}^{m}$, $j=1,2$, there exists a symbol $g(x, \xi) \in S_{1,5}^{m_{1}+m_{2}}$ of the form $g(x, \xi)$ $=g_{1}(x, \xi) g_{2}(x, \xi)+g^{\prime}(x, \xi)$ where $g^{\prime}(x, \xi) \in S_{1,+}^{m_{1}+m_{2}-(1-\delta)}$ such that $g\left(X, D_{x}\right)$ $=p_{1}\left(X, D_{x}\right) p_{2}\left(X, D_{x}\right)$.
ii) For a symbol $g(x, \xi) \in S_{1,0}^{m}$ there exists a symbol $g^{*}(x, \xi) \in S_{1, b}^{m}$ of the form $g^{*}(x, \xi)=\overline{g(x, \xi)}+g^{\prime}(x, \xi)$ where $g^{\prime}(x, \xi) \in S_{1, \sigma}^{m-(1-8)}$ such that $\left(g\left(X, D_{x}\right) u, v\right)=\left(u, g^{*}\left(X, D_{x}\right) v\right)$ for any $u, v \in \mathcal{S}$, where we used the notation

$$
(u, v)=\int u(x) v(x) d x \quad \text { for any } \quad u, v \in \mathcal{S}
$$

Theorem 1.1. For $g(x, \xi) \in S_{1, \delta}^{m}$ and real s, there exists a constant $C=C\left(m,|g|_{l, m}, s\right)$ such that

$$
\begin{equation*}
\left\|g\left(X, D_{x}\right) u\right\|_{p, s} \leqq C\|u\|_{p, m+s} \text { for } \quad u \in \mathcal{S} \text {. } \tag{1.2}
\end{equation*}
$$

Remark. Set $s_{o}=n(1 / p-1 / q)$ for $1<p \leqq q<\infty$. By the Hardy-Littlewood-Sobolev estimates of potentials we have $\|v\|_{q,-s_{0}} \leq C_{p, q}\|v\|_{p, 0}$, $v \in \mathcal{S}$, with a constant $C_{p, q}$. Then, by Theorem 1.1, we get $\left\|g\left(X, D_{x}\right) u\right\|_{q_{,}, s_{0}} \leq C\|u\|_{p, 0}, u \in \mathcal{S}$, for $g(x, \xi) \in S_{1, b}^{0}$. This means that Hörmander's problem in [2], p. 163, holds for $\rho=1$.

Proof 1°. The case $m=0$ and $s=0$. In this case in view of Lemma 1.1, we may assume that $p>2$. Let $p^{\prime}=p /(p-1)$, then $1<p^{\prime}$ <2. By ii) of Lemma 1.2 there is a symbol $g^{*}(x, \xi) \in S_{1, \mathrm{~s}}^{0}$ such that
$\left(g\left(X, D_{x}\right) u, v\right)=\left(u, g^{*}\left(X, D_{x}\right) v\right)$. Then, by Lemma 1.1 and Hölder's inequality we have

$$
\begin{aligned}
\left|\left(g\left(X, D_{x}\right) u, v\right)\right| & =\left|\left(u, g^{*}\left(X, D_{x}\right) v\right)\right| \\
& \leqq\|u\|_{p, 0}\left\|g^{*}\left(X, D_{x}\right) v\right\|_{p^{\prime}, 0} \leqq C\|u\|_{p, 0}\|v\|_{p^{\prime}, 0} .
\end{aligned}
$$

Therefore by the duality theorem we get $g\left(X, D_{x}\right) u \in L^{p}$ and

$$
\left\|g\left(X, D_{x}\right) u\right\|_{p, 0} \leqq C\|u\|_{p, 0}
$$

2°. The general case. Since $\langle\xi\rangle^{s} \in S_{1,0}^{s}$, by i) of Lemma 1.2 there is a symbol $g_{s}(x, \xi) \in S_{1, \delta}^{m+8}$ such that $g_{s}\left(X, D_{x}\right)=\left\langle D_{x}\right\rangle^{s} g\left(X, D_{x}\right)$. Therefore we have

$$
\begin{aligned}
\left\|g\left(X, D_{x}\right) u\right\|_{p, s} & =\left\|g_{s}\left(X, D_{x}\right) u\right\|_{p, 0} \\
& =\left\|\left(g_{s}\left(X, D_{x}\right)\left\langle D_{x}\right\rangle^{-(m+s)}\right)\left(\left\langle D_{x}\right\rangle^{m+s} u\right)\right\|_{p, 0}
\end{aligned}
$$

Since $p_{s}(x, \xi)\langle\xi\rangle^{-(m+s)} \in S_{1, \delta}^{0}$, by 1^{0} we obtain (1.2).
Q.E.D.
2. The properties of the space $H_{p, s}$ and Poincaré's lemma.

Proposition 2.1. If $s_{1} \geqq s_{2}$, then $H_{p, s_{1}} \subset H_{p, s_{2}}$ and

$$
\begin{equation*}
\|u\|_{p, s_{2}} \leqq C\left(s_{1}, s_{2}, p\right)\|u\|_{p, s_{1}} \text { for } u \in H_{p, s_{1}} \quad \text { (c.f. [1], p. 120). } \tag{2.1}
\end{equation*}
$$

Proof. Noting $\langle\xi\rangle^{-\left(s_{1}-s_{2}\right)} \in S_{1,0}^{0}$, by Theorem 1.1 we have

$$
\begin{aligned}
\|u\|_{p, s_{2}} & =\left\|\left\langle D_{x}\right\rangle^{s_{2}} u\right\|_{p, 0}=\left\|\left\langle D_{x}\right\rangle^{-\left(s_{1}-s_{2}\right)}\left(\left\langle D_{x}\right\rangle^{s_{1}} u\right)\right\|_{p, 0} \\
& \leqq C\left\|\left\langle D_{x}\right\rangle^{s_{1}} u\right\|_{p, 0}=C\|u\|_{p, s_{1}} \quad \text { for } \quad u \in \mathcal{S} .
\end{aligned}
$$

Since \mathcal{S} is dence in $H_{p, s_{1}}$, this means (2.1).
Q.E.D.

Theorem 2.1 (Poincaré's lemma). For any $1<p<\infty$ and any real $s>0$ there exists a constant C such that

$$
\begin{equation*}
\|u\|_{p, 0} \leqq C d^{s}\|u\|_{p, s} \quad \text { for } \quad u \in C_{o}^{\infty}(|x|<d) \tag{2.2}
\end{equation*}
$$

where C depends only on p and s and is independent of $d>0$.
Proof. We may only prove the theorem for $0<d<1$, since (2.2) is clear for $d \geqq 1$ by means of (2.1). Let $\psi(\xi) \in C_{0}^{\infty}\left(R^{n}\right)$ such that $\psi(\xi)$ $=1$ for $|\xi| \leqq 1 / 2$ and $\psi(\xi)=0$ for $|\xi| \geqq 1$, and let $\psi_{d, 8}(\xi)=\psi\left(d \varepsilon^{-1} \xi\right)$ where ε is a sufficiently small positive number to be fixed later. We define $u_{1}(x), u_{2}(x)$ by $\hat{u}_{1}(\xi)=\psi_{a, 4}(\xi) \hat{u}(\xi)$ and $\hat{u}_{2}(\xi)=\left\{1-\psi_{a, 8}(\xi)\right\} \hat{u}(\xi)$, respectively. Then we have $u(x)=u_{1}(x)+u_{2}(x)$. Set $g(\xi)=g_{d, 4}(\xi)$ $=d^{-s}\langle\xi\rangle^{-s}\left\{1-\psi_{d, s}(\xi)\right\}$. Then, $\partial_{\xi}^{\alpha} g(\xi)$

$$
=d^{-s} \sum_{\substack{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha \\ \alpha^{\prime} \neq 0}} C_{\alpha, \alpha^{\prime}} \partial_{\xi}^{\alpha^{\prime}}\langle\xi\rangle^{-s} \cdot\left(\frac{d}{\varepsilon}\right)^{\left|\alpha^{\prime \prime \prime}\right|} \psi^{\left(\alpha^{\prime \prime}\right)}\left(\frac{d}{\varepsilon} \xi\right)+d^{-s} \partial_{\xi}^{\alpha}\langle\xi\rangle^{-s} \cdot\left\{1-\psi_{d, 8}(\xi)\right\}
$$

Since $d\langle\xi\rangle \geqq \varepsilon / 2$ on the support of $\left\{1-\psi_{d, \varepsilon}(\xi)\right\}$, and $\varepsilon / 2 \leqq d\langle\xi\rangle \leqq C_{o}$ on the support of $\psi^{\left(\alpha^{\prime \prime}\right)}\left(d \varepsilon^{-1} \xi\right)$ where C_{o} is independent of $0<d<1$, we have $\left|\partial_{\xi}^{\alpha} g(\xi)\right| \leqq C_{\alpha,<}\langle\xi\rangle^{-|\alpha|}$. Hence by Theorem 1.1 we have

$$
\left\|u_{2}\right\|_{p, 0}=d^{s}\left\|g\left(D_{x}\right)\left\langle D_{x}\right\rangle^{s} u\right\|_{p, 0}
$$

$$
\leqq d^{s} C_{1,,}\left\|\left\langle D_{x}\right\rangle^{s} u\right\|_{p, 0}=d^{s} C_{1, \|}\|u\|_{p, s}
$$

where $C_{1, \varepsilon}$ is independent of d. We can write

$$
u_{1}(x)=\int \hat{\psi}_{d, \mathrm{e}}(y-x) u(y) d y=\int\left(\frac{\varepsilon}{d}\right)^{n} \hat{\psi}\left(\frac{\varepsilon}{d}(y-x)\right) u(y) d y .
$$

We can see easily that $|\hat{\psi}(z)| \leqq C_{2}$ and $\left\|\hat{\psi}_{d, e}\right\|_{L^{1}}=\|\hat{\psi}\|_{L^{1}}=C_{3}$ where C_{2} and C_{3} are independent of d and ε. Therefore,

$$
\begin{aligned}
\left|u_{1}(x)\right|^{p} & \leqq\left(\int_{|y|<a}\left|\hat{\psi}_{a, s}(x-y)\right| d y\right)^{p / p^{\prime}}\left(\left.\int_{\mid \hat{\psi}_{d, \varepsilon}}(x-y)| | u(y)\right|^{p} d y\right) \\
& \leqq C_{n, p} C_{2}^{p / p^{\prime}} \varepsilon^{n p / p^{\prime}} \int\left|\hat{\psi}_{d, s}(x-y)\right||u(y)|^{p} d y .
\end{aligned}
$$

Hence $\left\|u_{1}\right\|_{p, 0}^{p} \leqq C_{n, p} C_{2}^{p / p^{\prime}} C_{3} \varepsilon^{n / p^{\prime}}\|u\|_{p, 0}^{p}$, and taking $\varepsilon>0$ sufficiently small, we get $\left\|u_{1}\right\|_{p, 0} \leqq \frac{1}{2}\|u\|_{p, 0}$. Then, we have

$$
\|u\|_{p, 0} \leqq\left\|u_{1}\right\|_{p, 0}+\left\|u_{2}\right\|_{p, 0} \leqq \frac{1}{2}\|u\|_{p, 0}+C_{1} d^{s}\|u\|_{p, s}
$$

and get (2.2) for $C=2 C_{1}$.
Q.E.D.

Corollary. Let $s^{\prime}>s>0$ and $d>0$. Then there exists a constant $C=C\left(s^{\prime}, s, p, n\right)$, which is independent of $d>0$, such that

$$
\begin{equation*}
\|u\|_{p, s} \leqq C d^{s^{\prime}-s}\|u\|_{p, s^{\prime}} \quad \text { for } \quad u \in C_{o}^{\infty}(|x|<d) \tag{2.3}
\end{equation*}
$$

Next we consider a C^{∞}-coordinate transformation $x(y): R_{y}^{n} \rightarrow R_{x}^{n}$ such that

$$
\begin{equation*}
\partial_{y_{j}} x_{k}(y) \in \mathscr{B}_{y}, j, k=1, \cdots, n, C^{-1} \leqq\left|\operatorname{det}\left(\partial_{y} x(y)\right)\right| \leqq C \tag{2.4}
\end{equation*}
$$

for a constant $C>0$ where $\partial_{y} x(y)=\left(\partial_{y_{j}} x_{k}(y)\right)$ is the Jacobian matrix and $\operatorname{det}\left(\partial_{y} x(y)\right)$ denotes its determinant. For $u \in \mathcal{S}$ we put $w(y)=u(x(y))$.

Lemma 2.1 (Kumano-go [5]). For $\langle\xi\rangle^{m} \in S_{1,0}^{m}$ there exists a symbol $h(y, \eta) \in S_{1,0}^{m}$ such that $h\left(Y, D_{y}\right) w(y)=\left(\left\langle D_{x}\right\rangle^{m} u\right)(x(y))$.

Theorem 2.2. The space $H_{p, s}$ is invariant under the coordinate transformation satisfying (2.4) in the sense: $u(x) \in H_{p, s, x}$ if and only if $w(y)=u(x(y)) \in H_{p, s, y}$. More precisely there exist symbols $h(y, \eta)$ $\in S_{1,0}^{-s}$ and $g(x, \xi) \in S_{1,0}^{-s}$ such that $w(y)=h\left(Y, D_{y}\right) w_{0}(y)$ for $w_{0}(y)=u_{0}(x(y))$ if $u=\left\langle D_{x}\right\rangle^{-s} u_{0}$ for $u_{0} \in L^{p}$ and $u(x)=g\left(X, D_{x}\right) u_{0}(x)$ for $u_{0}(x)=w_{0}(y(x))$ if $w=\left\langle D_{y}\right\rangle^{-s} w_{0}$ for $w_{0} \in L^{p}$.

Remark. Theorem 2.2 was shown by Lions-Magenes [6] for the more general case, but here we give another proof which is simple and concrete.

Proof. We may only prove the inequality:

$$
C^{-1}\|u\|_{p, s, x} \leqq\|w\|_{p, s, y} \leqq C\|u\|_{p, s, x} \text { for } u(x) \in \mathcal{S}_{x}, w(y)=u(x(y)) \in \mathcal{S}_{y} .
$$

By Lemma 2.1 there is a symbol $h(y, \eta) \in S_{1,0, y}^{-s}$ such that $w(y)=u(x(y))$ $=\left(\left\langle D_{x}\right\rangle^{-s} u_{0}\right)(x(y))=h\left(Y, D_{y}\right) w_{0}(y)$ where $w_{0}(y)=u_{0}(x(y))$. Therefore, by Theorem 1.1,

$$
\begin{aligned}
\|w(y)\|_{p, s, y} & =\left\|h\left(Y, D_{x}\right) w_{0}(y)\right\|_{p, s, y} \leqq C_{1}\left\|w_{0}\right\|_{p, 0, y} \\
& \leqq C_{2}\left\|u_{0}\right\|_{p, 0, x}=C_{2}\|u\|_{p, s, x} .
\end{aligned}
$$

By the same way we have $\|u\|_{p, s, x} \leqq C\|w\|_{p, s, v}$.
Q.E.D.
3. The a priori estimate for elliptic operators.

Lemma 3.1 (Kumano-go [5]). Let $g(x, \xi) \in \mathbb{S}_{1, \delta}^{m}$. Then, for any real s there exists a constant C_{s} such that

$$
\begin{equation*}
\left\|g\left(X, D_{x}\right) u\right\|_{2, s} \leqq|g|_{0, m}\|u\|_{2, m+s}+C_{s}\|u\|_{2, m+s-(1-\delta) / 2} \tag{3.1}
\end{equation*}
$$

Lemma 3.2. For $g(x, \xi) \in S_{1, \delta}^{m}$ there exist constants $C_{p}^{(1)}$ and $C_{p}^{(2)}$ such that $\lim _{p \rightarrow 2} C_{p}^{(1)}=|g|_{0, m}$ and

$$
\begin{equation*}
\left\|g\left(X, D_{x}\right) u\right\|_{p, s} \leqq C_{p}^{(1)}\|u\|_{p m+s}+C_{p}^{(2)}\|u\|_{p, m+s-(1-\delta)} . \tag{3.2}
\end{equation*}
$$

Proof. Let $\psi(\xi) \in C^{\infty}$ such that $\psi(\xi)=0$ for $|\xi| \leqq 1, \psi(\xi)=1$ for $|\xi| \geqq 2$ and $0 \leqq \psi(\xi) \leqq 1$, and set $\psi_{k}(\xi)=\psi(\xi / k), k=1,2, \cdots$. Then, by Lemma 3.1 and Plancherel's formula we have

$$
\begin{aligned}
& \left\|g\left(X, D_{x}\right) \psi_{k}\left(D_{x}\right) u\right\|_{2, s} \\
& \quad \leqq\left\{|g|_{0, m}+C_{s} \sup _{\xi}\left(\left|\psi_{k}(\xi)\right|\langle\xi\rangle^{-(1-\delta) / 2}\right)\right\}\|u\|_{2, m+s} .
\end{aligned}
$$

Therefore for any $\varepsilon>0$ there exists k_{ε} such that

$$
\left\|g\left(X, D_{x}\right) \psi_{r_{s}}\left(D_{x}\right) u\right\|_{2, s} \leqq\left(|g|_{0, m}+\varepsilon\right)\|u\|_{2, m+s} .
$$

Then, by Theorem 1.1 and the interpolation theorem of Riesz-Thorin (see [7]), we get $\left\|g\left(X, D_{x}\right) \psi_{k}\left(D_{x}\right) u\right\|_{p, s} \leqq C_{p}\|u\|_{p, m+s}$, where $\lim _{p \rightarrow 2} C_{p}=|g|_{0, m}$ $+\varepsilon$. Using the fact $g(x, \xi)\left(1-\psi_{k}(\xi)\right) \in S^{-\infty}\left(=\bigcap_{t} S_{1,0}^{t}\right)$ and taking a sequence $\varepsilon_{1}>\varepsilon_{2}>\cdots \rightarrow 0$, we get (3.2).
Q.E.D.

Theorem 3.1. Let $g(x, \xi) \in S_{1, s}^{m}$ satisfy $|g(x, \xi)| \geqq C_{o}\langle\xi\rangle^{m}$. Then there exist constants C_{p}, C_{p}^{\prime} and $C_{p}^{(1)}, C_{p}^{(2)}$ such that

$$
\begin{align*}
& \|u\|_{p, m+s} \leqq C_{p}\left\|g\left(X, D_{x}\right) u\right\|_{p, s}+C_{p}^{\prime}\|u\|_{p, m+s-(1-\delta)}, \tag{3.3}\\
& \|u\|_{p, m+s} \leqq C_{p}^{(1)}\left\|g\left(X, D_{x}\right) u\right\|_{p, s}+C_{p}^{(2)}\|u\|_{p, m+s-(1-\delta)},
\end{align*}
$$

where C_{p}, C_{p}^{\prime} are bounded when p is on any compact set of $(1, \infty)$ and $\lim _{p \rightarrow 2} C_{p}^{(1)}=C_{0}^{-1}$.

Proof. Setting $g_{-1}(x, \xi)=g(x, \xi)^{-1}\left(\in S_{1, \delta}^{-m}\right)$ we write

$$
\begin{aligned}
\|u\|_{p, m+s} \leqq & \left\|g_{-1}\left(X, D_{x}\right)\left\langle D_{x}\right\rangle^{m+s} g\left(X, D_{x}\right) u\right\|_{p, 0} \\
& +\left\|g_{-1}\left(X, D_{x}\right)\left\{g\left(X, D_{x}\right)\left\langle D_{x}\right\rangle^{m+s}-\left\langle D_{x}\right\rangle^{m+s} g\left(X, D_{x}\right)\right\} u\right\|_{p, 0} \\
& +\left\|\left\{1-g_{-1}\left(X, D_{x}\right) g\left(X, D_{x}\right)\right\}\left\langle D_{x}\right\rangle^{m+s} u\right\|_{p, 0} .
\end{aligned}
$$

Then, using i) of Lemma 1.2 and Theorem 1.1 we can show that the second and third terms do not exceed $C_{p}^{\prime}\|u\|_{p, m+s-(1-\delta)}$. As for the first term, by the assumption of $g(x, \xi)$ we get $g_{-1}(x, \xi)\langle\xi\rangle^{m+s} \in S_{1, \delta}^{s}$ and $\sup _{x, \xi}\left\{\left|g_{-1}(x, \xi)\right|\langle\xi\rangle^{m+s}\langle\xi\rangle^{-s}\right\} \leqq C_{0}^{-1}$. Therefore if we apply Theorem 1.1 to $g_{-1}\left(X, D_{x}\right)\left\langle D_{x}\right\rangle^{m+s}$, we have

$$
\left\|g_{-1}\left(X, D_{x}\right)\left\langle D_{x}\right\rangle^{m+s} g\left(X, D_{x}\right) u\right\|_{p, 0} \leqq C_{p}\left\|g\left(X, D_{x}\right) u\right\|_{p, s} .
$$

Hence we get (3.3). By Lemma 3.2 and Theorem 1.1 we get (3.4) for $C_{p}^{(1)}$ such that $\lim _{p \rightarrow 2} C_{p}^{(1)}=C_{0}^{-1}$.
Q.E.D.

References

[1] L. Hörmander: Estimates for translation invariant operators in L^{p} spaces. Acta Math., 104, 93-140 (1960).
[2] --: Pseudo-differential operators and hypoelliptic equations. Proc. Symposium on Singular Integrals. Amer. Math. Soc.,10, 138-183 (1968).
[3] V. M. Kagan: Boundedness of pseudo-differential operators in L_{p}. Izv. Vysš. Učebn. Zaved. Matematika, no. 6 (73), 35-44 (1968) (in Russian).
[4] H. Kumano-go: Remarks on pseudo-differential operators. J. Math. Soc. Japan, 21, 413-439 (1969).
[5] -: Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo (to appear).
[6] J. L. Lions and E. Magenes: Problemi ai limiti non omogenei. III. Ann. Scuola Norm. Sup. Pisa., Ser. 3, 15, 41-103 (1961).
[7] A. Zygmund: Trigonometricla Series. II. Cambridge (1959).

[^0]: *) Department of Mathematics, Osaka University.
 **) Osaka Industrial University.

