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32. L.theory of Pseudo.differential Operators

By Hitoshi KUMAN0-G0*> and Michihiro NAGASE**
(Comm. by Kinjir,8 KUNU(I, M. ft. A., Feb. 12, 1970)

Introduction. The Lf-theory of pseudo-differential operators has
been studied in many papers, but we know very few papers which are
concerned with L-theory. We say g(x, )e S,,, 0<p_<_l, 0_<_, when
g(x, ) e C(R xR) and for any a, , there exists a constant C, such
that

88{g(x, ) C,()
where -(,..., ), -(,..., fin) are multi-indices whose elements
are non-negative integers, <}=(I + ), and --/3x, --/,
]=1, ., n,

=,.. 3
fl] =fl+. +. For a pseudo-differential operator defined by the
symbol of class S, the L-boundedness of the orm ]]g(X, D)u]
C[]u]}+ was proved by HSrmander [2] and Kumano-go [4] in the
case 08<pl.

In the present paper we shall study the general L-theory or
pseudo-differential operators of class S in the case" 06<1 and
l<p<. Recently or operators o class S,, Kagan [3] proved the
L-boundedness" lip(X, D)U]}L, GC]]u[], for l<pG2. Applying the
theory in Kumano-go [5], we first prove the inequality Ilg(X, D)ul,
GCu],+ for any real s and 1<p< (which solves a problem of
HSrmander in [2], p. 163, for the typical case p=l), and prove the
theorems" the generalized Poincar6 inequality, the invariance of the
space H, under coordinate transformation and the a priori estimate
for elliptic operators.

1. Definitions and fundamental lemmas.
We shall use the following notations"-{u(x) e C(R) lim Ix ] 3u(x) -0 for any m and a}.

’ denotes the dual space of . For u e 3, we define the Fourier trans-

form of u by 4($)=.[e-*’u(x)dx, x.$-x$+... + x$. For any real

s we define an operator <D}" by

<D}u(x)- (2)-n[e*’f}()d$.
J
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We define the norm Ilull, by

Ilu, p,8- {j’l (Dx}su(x) ’dx}The operator (D)" G--*3 can be uniquely extended to the operator
(D}" ’’ by

((D}u, v}-(u, (D}v} or u e 3’, v e 3.
Definition 1.1. For l(p( and --s we define the

Sobolev space H, by H, {u e ’; (D}u e L(R)} {u e
(D}-Uo for some Uo e L(R)}.
By the definition we can easily see that H, is a Banach space

provided with the norm Iu[ ,,, and 3 is dense in H,.
Definition 1.2. For g(x, ) e S, we define an operator g(X,D)

by g(X, D)u(x)-(2)-je’g(x, $)()d$ for u e .
It is clear that g(X,D)" is linear. In what follows we

assume that 01 and lp. For g(x, )eS we use a nota-
tion ]g = ]g], defined by

g[,- Max sup {[33g(x, $)[($}-<’+"-)}<.
Lemma 1.1 (Kagan [3]). Assume that l<p2. For any g(x,

e S, there exists a constant C such that
(1.1) ]]g(X,D)u]],oCI]u],o for u e 3,
where C depends only on p and g ,o for suciently large 1.

Lemma 1.2 (Kumano-go [5]). i) For two symbols g(x, $) e S,
]=1, 2, there exists a symbol g(x, $) e S$+ of the form g(x,

g(x, )g(x, )+ g’(x, ) where g’(x, ) e S+-(- such tha$ g(X, D)
p(X, D)p(X, D).

ii) For a symbol g(x, ) e S there exists a symbol g*(x, ) e S of
the form g*(x, )= g(x, ) + g’(x, ) where g’(x, ) e S;(-> such that
(g(X,D)u, v)-(u, g*(X,D)v) for any u, v e , where we used the
notation

(u, v)-.[u(x)v(x)dx for any u, v e 3.

Theorem 1.1. For g(x, ) eS and real s, there exists a constant
C= C(m, g],, s) such that
(1.2) Ilg(X,D)ul,Cllull,+ ]or ue ,

Remark. Set so-n(1/p-1/q) for l<pq<. By the Hardy-
Littlewood-Sobolev estimates o potentials we have ]Iv ],-o C,]]v
v e3, with a constant C,. Then, by Theorem 1.1, we get
]]g(X,D)u],_oC ]u],o, u e 3, for g(x, ) e S,. This means that
HSrmander’s problem in [2], p. 163, holds or p-1.

Proof 1. The case m=0 and s-0. In this case in view
Lemma 1.1, we may assume that p>2. Let p’=p/(p--1), then
<2. By ii)of Lemma 1.2 there is a symbol g*(x, )e S[, such that



140 H. KUMAN0-GO and M. NAGASE [Vol. 46,

(g(X,D)u,v)=(u,g*(X,D)v). Then, by Lemma 1.1 and Hhlder’s
inequality we have

(g(X, D)u, v)[ [(u, g*(X, D)v)[
=< Ilull,0 IIg*(X, n)vll,,o<=Cllull,o

Therefore by the duality theorem we get g(X, D)u e L and
Jig(X, D)u(l,o <-

2. The general case. Since (’ e S,0, by i) of Lemma 1.2 there
/’ such that g(X, D)--(D)’g(X, D). There-is a symbol g(x, ) e ,

fore we have

II(g(X, D)(D-(+))((D+u)II,o.
Since p,(x, )(-/ e S,, by 1 we obtain (1.2). Q.E.D.

2. The properties of the space H,8 and Poincar6’s lemma.
Proposition 2.1. If sl>= s2, then H,8lcH, and

I]ul],<__C(s, s, p) ]]u]l,, for u e H,, (c.f [1], p. 120).
Proof. Noting (-("-’) e S,0, by Theorem 1.1 we have

Ilul],-l(n}u[],0 ]](n}-(’-’)((n}u)]],o

Since is denee in H,,, this means (2.1). Q.E.D.
Theorem 2.1 (Poincard’s lemma). For any 1 p oo and any

real sO there exists a constant C such that
(2.2) Ilull,o_<Cdllull,, for u e C(Ixl <d)
where C depends only on p and s and is independent of dO.

Proof. We may only prove the theorem for 0(d(1, since (2.2)
is clear for d1 by means of (2.1). Let () e C$(R) such that ()
=1 for 111/2 and ()=0 for Ill, and let 9,,()=9(de-)
where e is a sufficiently small positive number to be fixed later. We
define u(x), u(x)by fi()=9,.()fi($) and ($)={1-9,,($)}(),
respectively. Then we have u(x)=u(x) + u(x). Set g() =g,,()
d-(}-{1--,,()}. Then,

3g($)
=d-, E C..,8’<>-. -.

a"O

Since d<>e/2 on the support of {i-+,,()}, and e/2d<>Co on
the support of <"">(de-) where Co is independent of 0<d<l, we
have g() C.,.<>-’"’. Hence by Theorem I.I we have

]]u]],o=d ]]g(D)<D>u],o
dC,, <D>’ul,o= dC,,, lu,

where C,. is independent of d. We can write

We ean see easily that () NC and la,,l= II@ll=C where C and
C are indeenden of g end s. herefore,
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,, ,.(x-- Y) u(y) dy.
Hence {]u],oC,C/’Ce/’]u]],o, and taking e0 sufficiently small,

1 Then, we havewe get u,ou],o.
1lu]],o I]u,o+ ]u]],o]u,o+Cd]u,,

and get (2.2) for C-2C. Q.E.D.
Corollary. Let s’ s 0 and d O. Then there exists a constant

C=C(s’, s, p, n), which is independent of dO, such that
(2.3) liull,ed’-llull,, for ue C:(]x{

Next we consider a C-coordinate transformation x(y)" RR
such that
(2.4) 3vx(y) e, ], k= 1, ..., n, C- det(3x(y)) C
for a constant C0 where vx(y)=(3vx(y)) is the Jacobian matrix and
det(x(y)) denotes its determinant. For u e we put w(y)=u(x(y)).

Lemma 2.1 (Kumano-go [5]). For( e So there exists a symbol
h(y, ) e So such that h(Y, D)w(y)-((Du)(x(y)).

Theorem 2.2. The space H, is invariant under the coordinate

transformation satisfying (2.4)in the sense" u(x) e H,, if and only

if w(y)=u(x(y)) e H,,,. More precisely there exist symbols h(y,
e S and g(x, ) e $1: such that w(y)-h(Y, D)wo(y) for Wo(y)=uo(x(y))
if u= (D)-Uo for Uo e L and u(x)= g(X, D)uo(X) for Uo(X)=Wo(y(x)) if
w-(D-’Wo/or Woe L.

Remark. Theorem 2.2 was shown by Lions-Magenes [6] for the
more general case, but here we give another proo which is simple and
concrete.

Proof. We may only prove the inequality"

C-[u[],, ]w],,C[u[],, for u(x) e, w(y)=u(x(y)) e .
By Lemma 2.1 there is a symbol h(y, )e S,v such that w(y)=u(x(y))
=((D)-Uo)(X(y))=h(Y, Dv)wo(y) where Wo(y)=Uo(X(y)). Therefore,
by Theorem 1.1,

By the same way we have liuli,,Citwli,,. Q.E.D.. The a priori estimate for elliptic operators.
Lemma 3.1 (Kumano-go [5]). Let g(x, ) e S. Then, for any

real s there exists a constant C such that
(3.1) I]g(X, D)ui], go,iluli,+ + Cilui],+_(_)/.

Lemma .2. For g(x, ) e S theve exist constants C and C
such that lira C)= g]o, and

(3.2) g(X, D)u, C llu ll ++
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Proof. Let @($) e C such that @($)=0 for 151=<1, ($)=1 for
][ >__2 and 0 _<_() _<_1, and set @($)=($/k), k=l, 2, Then, by
Lemma 3.1 and Plancherel’s formula we have

I[g(X, D)(D)u[I,,

Therefore for any >0 there exists k. such that
g(X, D)(D)uI, ( g ]o, + ) Ilu II=,

Then, by Theorem 1.1 and the interpolation theorem of Riesz-Thorin
(see [7]), we get IIg(Z, D)@(D)uli,Cpilull,+, where lim C-
+e. Using the fact g(x, )(1-@()) e S-(-SI,0) and taking a

sequence e>e...0, we get (3.2). Q.E.D.
Theorem .1. Let g(x, $) e S satisfy g(x, ) Co($. Then

there exist constants C, C and C), C such that
(3.3) Ilul,+ Cllg(X, D)u I1, +

where C, C are bounded when p is on any compact set of (1, ) and
lira C C*.

Proof. Setting g_(x, $)= g(x, )- ( e S,:) we write

+ ]g_(X, D){g(X, D)<D}+’--<D}+g(X, D)}u] ,o

Then, using i) of Lemma 1.2 and Theorem 1.1 we can show that the
second and third terms do not exceed Clu]],+,_(,_). As for the first
term, by the assumption of g(x,) we get g_(x,)<}+e S[, and
sup{]g_(x, )l<>+<}-}gC;. Therefore if we apply Theorem 1.1

to g_,(X,D)<D}+, we have

Hence we get (3.3). By Lemma 3.2 and Theorem 1.1 we get (3.4) for

C such that lira C =Cy. Q.E.D.
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