21. Endomorphism Rings of Modules over Orders in Artinian Rings

By Kanzo MASAIKE Tokyo University of Education (Comm. by Kenjiro Shoda, M. J. A., Feb. 12, 1970)

Recently Small [7] proved that if a ring R has a right Artinian (classical) right quotient ring, then so does the endomorphism ring of a finitely generated projective right R-module.

On the other hand, it has been shown by Hart [3] that if a ring R has a semi-simple Artinian (classical) two-sided quotient ring Q, so does the endomorphism ring of a finitely generated torsion free right R-module M. In this case M is not necessarily projective, but its quotient module $M \otimes_R Q$ is projective as a right Q-module. Therefore, in the case where Q is non-semi-simple, it is interesting to obtain a condition under which finitely generated torsion free modules have projective quotient modules. The next proposition of this paper gives such a condition.

Proposition 1. If a ring R has a two-sided perfect two-sided quotient ring Q, then the following conditions on a finitely generated right R-module M are equivalent:

(1) M is R-torsion free (in the sense of Levy [5]) and $M \otimes_{\mathbb{R}} Q$ is Q-projective.

(2) *M* is isomorphic to a direct summand of a right *R*-module *K* such that $\sum_{i=1}^{n} \bigoplus R^{(i)} \supseteq K \supseteq \sum_{i=1}^{n} \bigoplus I_i$, where $R^{(i)}$ is a copy of *R* and I_i is a right ideal of $R^{(i)}$ containing a regular element.

In this paper this condition (2), without assuming that M is finitely generated, will be called condition (A).

Then, we obtain the next main theorem which generalizes the above results of Small [7, Corollary 2] and Hart [3, Theorem 2].

Theorem 1. If R is a ring with a right (resp. two-sided) Artinian right (resp. two-sided) quotient ring Q, then the endomorphism ring $\operatorname{End}_R(M)$ of a right R-module M satisfying condition (A) has also a right (resp. two-sided) Artinian right (resp. two-sided) quotient ring isomorphic to $\operatorname{End}_Q(M \otimes_R Q) = \operatorname{End}_R(M \otimes_R Q)$.

As an application of Theorem 1, we shall prove finally

Theorem 2. In Theorem 1, if Q is quasi-Frobenius and M is faithful, then $\operatorname{End}_{\mathbb{R}}(M)$ has a quasi-Frobenius quotient ring which is isomorphic to the R-endomorphism ring of the injective hull of M.

This result implies the Morita-invariance of "right (resp. twosided) order in quasi-Frobenius ring".

The author wishes to thank Prof. H. Tachikawa for his suggestion and encouragement.

1. **Preliminaries.** Let R be a ring. An element $s \in R$ is said to be right (resp. left) regular if s has no non-zero right (resp. left) annihilator. A right and left regular element is called regular. A right R-module M is said to be torsion free, if no non-zero element of M is annihilated by a regular element of R. Levy [5, Proposition 1.5] proved that if M is torsion free right R-module and R has a right quotient ring Q, then the correspondence $\sigma: M \to M \otimes_R Q$ defined by $\sigma(m) = m \otimes 1$, where $m \in M$, is an *R*-monomorphism and every right *Q*module M' such that it contains M as an R-submodule and can be represented by M' = MQ is Q-isomorphic to $M \otimes_R Q$. In the following such a module MQ is called a quotient Q-module of M. Let M ond N be torsion free right *R*-modules. Then every $f \in \operatorname{Hom}_{R}(M, N)$ can be extended naturally to $f' \in \operatorname{Hom}_{Q}(MQ, NQ)$ by $f'(ms^{-1}) = f(m)s^{-1}$, where $m \in M$, $s \in R$ and s regular. Clearly this is the unique extension of f and it is easy to check $\operatorname{Hom}_{\mathcal{O}}(MQ, NQ) = \operatorname{Hom}_{\mathcal{R}}(MQ, NQ)$. Then the endomorphism ring $\operatorname{End}_R(M)$ is regarded to be a subring of $\operatorname{End}_Q(MQ)$ $= \operatorname{End}_{R}(MQ).$

Throughout this paper we assume that R is a ring (not necessarily with unity) which contains a regular element and that all homomorphisms between modules will be written on the left.

2. To begin with we shall prove Proposition 1.

Proof of Proposition 1. (1) \Rightarrow (2). There is a finitely generated right Q-module N' such that $MQ\oplus N' = \sum_{i=1}^{n} \oplus Q^{(i)}$, where MQ is the quotient Q-module of M and $Q^{(i)}$ is a copy of Q. Hence we can choose a finitely generated torsion free right R-module N such that N' = NQ. Now write $K = M \oplus N$, then $KQ = MQ \oplus NQ$, since M and N are Rtorsion free. Let e_1, \dots, e_n be free Q-basis of $KQ \left(= \sum_{i=1}^{n} \oplus Q^{(i)} \right)$ and k_1, \dots, k_t be the R-generators of K. Write $k_i = \sum_{j=1}^{n} e_j p_{ij}, p_{ij} \in Q$, $(i=1,\dots,t)$. As Q is the left quotient ring of R, there exist $a_{ij}, d \in R$ and d regular such that $p_{ij} = d^{-1}a_{ij}, (i=1,\dots,t, j=1,\dots,n)$. Hence $K \subseteq \sum_{ij} e_j p_{ij} R + \sum_{ij} e_j P_{ij} Z \subseteq \sum_{j=1}^{n} \oplus e_j d^{-1} R$, where Z is the ring of rational integers. On the other hand, since Q is the right quotient ring of R and KQ is the quotient Q-module of K, there exist $x_i \in K, q_i \in Q$ such that $x_i q_i = e_i d^{-1}, (i=1,\dots,n)$. Put $x_i = \sum_{j=1}^{n} e_j d^{-1} r_{ij}$. Then we have $r_{ij} q_i = 0$ $(i \neq j), r_{ii} q_i = 1$. It is to be noted that every right (resp. left) regular element in a left (resp. right) perfect ring with unit is invertible and then regular (cf. Gupta [2]). Hence r_{ii} and q_i are regular in Q and $r_{ij}=0$ $(i \neq j)$. Then $x_i = e_i d^{-1} r_{ii}$, where $r_{ii} \in R$. Let I_i be a right ideal of R generated by r_{ii} $(i=1, \dots, n)$. Then we can conclude that $\sum_{i=1}^{n} \bigoplus e_i d^{-1}R \supseteq K \supseteq \sum_{i=1}^{n} \bigoplus e_i d^{-1}I_i$. This completes the proof of $(1) \Rightarrow (2)$. (2) $\Rightarrow (1)$. Clearly M is R-torsion free. Write $M \oplus N = K$, where N is a submodule of K. Then $KQ = MQ \oplus NQ$. Since I_i contains a

regular element, we have $KQ = \sum_{i=1}^{n} \bigoplus Q^{(i)}$.

Proposition 2. If R has a right quotient ring Q and M is an unital right Q-module, then M_Q is Q-injective if and only if M_R is R-injective.

Proof. If M_R is *R*-injective, then the proof of Gupta [1, Theorem 2.1] is valid even if R has not identity and hence M_q is Q-injective. Conversely let M_Q be Q-injective. To prove that M_R is R-injective, it suffices to show that if B_R is a submodule of a right *R*-module A_R and $f: B_R \rightarrow M_R$ is an R-monomorphism, then f can be extended to $g: A_R$ $\rightarrow M_R$, for we can always shift from any homomorphism $h: B_R \rightarrow M_R$ to the induced monomorphism $h: [B/\ker(h)]_R \to M_R$. Since it is easy to see that M_R is R-torsion free, B_R is R-torsion free. Then f can be extended to $f': [BQ]_q \rightarrow M_q$, where $f'(bs^{-1}) = f(b)s^{-1}$, $b \in B$, $s \in R$ and s regular. As was pointed out by Jans [4], $T(A) = \{a \in A \mid \text{there exists} \}$ $s \in R$ regular such that as=0 is an R-submodule of A. Since B_R and $[A/T(A)]_R$ are R-torsion free, then $B \cap T(A) = 0$, and B_R can be regarded to be an R-submodule of $[A/T(A)]_R$. As the quotient Q-module of B_R is determined uniquely up to isomorphism, $[BQ]_Q$ becomes a Q-submodule of $[{A/T(A)}_Q]_Q$. Then f' can be extended to Q-homomorphism $g': [\{A/T(A)\}Q]_q \rightarrow M_q$, since M_q is Q-injective. Let $\pi: A_R \rightarrow [A/T(A)]_R$ be the cannonical R-homomorphism, then $g = g' \pi : A_R \rightarrow M_R$ is the desired extension of f.

Let R be a ring with a right quotient ring Q. Let $Q^{(i)}$ and $R^{(i)}$ be copies of Q and R respectively and $R^{(i)} \subseteq Q^{(i)}$ $(i=1,\dots,n)$. Then a right R-submodule M of $\sum_{i=1}^{n} \bigoplus R^{(i)}$ can be imbedded into $\sum_{i=1}^{n} \bigoplus Q^{(i)}$, and we can define a right Q-submodule MQ in a natural way. In connexion with Proposition 1 we have the next lemma which generalizes the result of Hart [3, Theorem 1], in his case M is assumed to be finitely generated and Q is a two-sided quotient ring.

Lemma 1. Let R be a ring with a right (resp. two-sided) quotient ring Q and M a right R-submodule of $\sum_{i=1}^{n} \bigoplus R^{(i)}$ such that $MQ = \sum_{i=1}^{n} \bigoplus Q^{(i)}$. If every right regular (resp. regular) element of $\operatorname{End}_{Q}(MQ)$ is invertible, then $\operatorname{End}_{R}(M)$ has a right (resp. two-sided) quotient ring isomorphic to $\operatorname{End}_{Q}(MQ)$.

Proof. Let $\alpha \in \text{End}_{\rho}(MQ)$ be arbitrary. Choose the Q-free basis of $MQ e_1, \dots, e_n$, where e_i has 1 in *i*-th component and 0 elsewhere $(i=1, \dots, n)$. Put $\alpha(e_i) = \sum_{i=1}^n e_i q_{ij} (q_{ij} \in Q)$. First we shall consider the case where Q is the right quotient ring. Then there exists an element $s \in R$ regular such that $e_i s \in M$ and $e_j q_{ij} s \in M$ $(i, j=1, \dots, n)$. Define $f' \in \operatorname{End}_{Q}(MQ)$ by $f'(z) = \sum_{i=1}^{n} e_{i} s p_{i}$, where $z = \sum_{i=1}^{n} e_{i} p_{i} \in MQ$ $(p_{i} \in Q)$. Then the restriction f = f' | M is in $\operatorname{End}_R(M)$, since $z \in M$ implies $p_i \in R$. If $z \in M$, then $\alpha f'(z) = \sum_{i,j=1}^{n} e_j q_{ij} s p_i \in M$. Hence $g' = \alpha f'$ can be regarded to be an element of $\operatorname{End}_{R}(M)$. Since s is invertible in Q, f' is invertible $((f')^{-1}: z \to \sum_{i=1}^{n} e_i s^{-1} p_i).$ Therefore $\alpha = g'(f')^{-1}.$ Next let $h \in \operatorname{End}_R(M)$ be regular and $h' \in \operatorname{End}_{\rho}(MQ)$ the extension of h. Assume $h'\beta = 0$ for any $\beta \in \operatorname{End}_{\rho}(MQ)$. Then β can be written by $g'_1(f'_1)^{-1}$, where g'_1 , $f'_1 \in \operatorname{End}_{\varrho}(MQ)$ and $g_1 = g'_1 | M, f_1 = f'_1 | M$ are elements of $\operatorname{End}_R(M)$. Therefore $h'\beta = h'g'_1(f'_1)^{-1} = 0$, $h'g'_1 = 0$ and $hg_1 = 0$. Since h is regular in End_R(M), it follows that $g_1=0$ and $g'_1=0$. This implies $\beta=0$ and h' is right regular in $\operatorname{End}_{\rho}(MQ)$. Hence $\operatorname{End}_{\rho}(MQ)$ is the right quotient ring of $\operatorname{End}_{R}(M)$.

Next we shall consider the case where Q is the two-sided quotient ring. We can choose regular elements $t, u \in R$ such that $e_i t \in M$, $uq_{ij} \in R$ $(i, j=1, \dots, n)$. Define $f'' \in \operatorname{End}_Q(MQ)$ by putting f''(z) $= \sum_{i=1}^n e_i tup_i$, where $z = \sum_{i=1}^n e_i p_i \in MQ$, $(p_i \in Q)$. Then the restriction $f'' \mid M$ is in $\operatorname{End}_R(M)$. If $z \in M$, then $f''\alpha(z) = \sum_{i,j=1}^n e_j tuq_{ij} p_i \in M$. Then $g'' = f''\alpha$ can be regarded to be an element of $\operatorname{End}_R(M)$. Hence $\alpha = (f'')^{-1}g''$. As similarly as in the first case every regular element of $\operatorname{End}_R(M)$ is regular in $\operatorname{End}_Q(MQ)$.

Now we are able to prove Theorem 1.

Proof of Theorem 1. If $K=M\oplus N$ where N is a submodule of K, then $KQ=MQ\oplus NQ=\sum_{i=1}^{n}\oplus Q^{(i)}$. Since $\operatorname{End}_{Q}(KQ)\cong Q_{n}$, the complete ring of $n\times n$ matrices over Q, it is a right (resp. two-sided) Artinian ring. Hence by Lemma 1, $\operatorname{End}_{Q}(KQ)$ is a right (resp. two-sided) quotient ring of $\operatorname{End}_{R}(K)$. Let $e \in \operatorname{End}_{R}(K)$ be the projection $M\oplus N$ $\rightarrow M$. Since e is an idempotent element, by Small [7, Theorem 3] and its right left symmetry we can deduce that $e'(\operatorname{End}_{Q}(KQ))e'$ is a right (resp. two-sided) Artinian right (resp. two-sided) quotient ring of $e(\operatorname{End}_{R}(K))e$, where $e' \in \operatorname{End}_{Q}(KQ)$ is the extension of e. Since e' is the projection $MQ \oplus NQ \rightarrow MQ$, we have $e(\operatorname{End}_R(K))e \cong \operatorname{End}_R(M)$ and $e'(\operatorname{End}_o(KQ))e' \cong \operatorname{End}_o(MQ)$. This completes the proof.

Remark. Let R be a semi-prime right Goldie ring. Then every non-zero right ideal satisfies condition (A), for it is a direct summand of an essential right ideal containing a regular element. Therefore, several results by Hart [3], e.g. Theorems 4-6 are obtained immediately from our Theorem 1.

Proof of Theorem 2. From the assumption, we can easily check that $[MQ]_Q$ is a faithful, finitely generated and projective Q-module. By the result of Morita [6, Theorem 16.6], $\operatorname{End}_Q(MQ)$ is quasi-Frobenius. Since Q is quasi-Frobenius, $[MQ]_Q$ is an injective Q-module and $[MQ]_R$ is an injective R-module by Proposition 2. On the other hand $[MQ]_R$ is an essential extension of M_R . Hence it is the injective hull of M_R .

References

- Gupta, R. N.: Self-injective quotient rings and injective quotient modules. Osaka J. Math., 5, 69-87 (1968).
- [2] ——: Characterization of rings whose classical quotient rings are perfect rings (to appear).
- [3] Hart, R.: Endomorphisms of modules over semi-prime rings. J. Algebra, 4, 46-51 (1966).
- [4] Jans, J. P.: On orders in quasi-Frobenius rings. J. Algebra, 7, 35-43 (1967).
- [5] Levy, L.: Torsion free and divisible modules over non-integral domains. Can. J. Math., 15, 132-151 (1963).
- [6] Morita, K.: Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A, 6, 83-142 (1958).
- [7] Small, L. W.: Orders in Artinian rings. II. J. Algebra, 9, 266-273 (1968).