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On the Evolution Equations with
Finite Propagation Speed

By Sigeru IIZOHATA
(Comm. by Kinjir5 KUNVGI, M. Z. A., March 12, 1970)

1. Introduction. Let

(1.1) u(x, t)= a(x, t) u(x, t)

be an evolution equation defined on (x, t) e RX [0, T]_=/2. We suppose
all the coefficients are infinitely differentiable, and that for any time
to e [0, T) and any initial data

there exists a unique solution u(x, t) for t e [t0, T] in some functional
space, say in

We say that (1.1) has a finite propagation speed if for any compact
K in R, there exists a finite (K) (propagation speed) such that for any
initial data (x)(0(x),..., _(x))e, with initial time t0, whose
support is contained in K, the support of the solution u(x, t) is
contained in

U (, t0) + c),
where C2() is the cone defined by {(x, t); xlg2(K)t, tO}.

We say that (1.1) is a kowalevskian in 9, if the coefficients a(x,t)
appearing in the second member are identically zero if l’l +]>m.
Our result is the

Theorem. In order that (1.1) have a finite propagation speed, it
is necessary that (1.1) be kowalevskian in

This theorem was proved by Grding [1] in the case where all the
coefficients are constant. Now we can prove this theorem by the
same method as in [2]. The detailed proof will be given in a forth-
coming paper. In this Note, to make clear our reasoning, we argue
on a simple equation.

2. Localizations of equation. Let

(2.1) u(x, t)- a(x, t) u(x, t)a x, t; u(x, t)

be an evolution equation, not kowalevskian, in 9. Without loss of
generality, we may assume that at the origin the second member of
(2.1) is effectively of order p(> 1). We can find then a complex num-

1) With regards to these notations, see [2]. As the proof given later shows,
this conditions can be replaced by weaker conditions.
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ber o=$o/i?o (0, ]0:/:0), such that
(2.2) Re a(0, 0)=2>0.

Now take a function (x) e of small support taking the value 1 in a
neighborhood of x- 0. Apply (x) to (2.1), then

where the coefficients may be supposed, by changing these outside the
support of fl(x), to be. near the values at the origin (localization in the
x-space) if we restrict the variable t to a small neighborhood of zero,
say tK e. Here the order of a,, is equal to (p--

Now by the hypothesis of the well-posedness of (2.1), there exists
a constant C and h independent of (x0, t0) such that it hold for any
initial data u(x, O) e ,
(2.4) U(Xo, to) C sup lDu(x, O) l, or

or any Xo e supp[] and to e [0, T]. So, let us denote by T(xo, to) the
distribution (in y) defined by
(2.5) U(Xo, o)-(T(Xo, o), u(y, 0)).

Let us suppose tha$ (2.1) has a finite propagation speed. This
implies that there exists a positive constant such that or Xo e supp[],
nd $o [0, el, (e sm11),
(2.6) supp[T(x0, $o)]Bto(Xo){y; ly--Xo[ $0}.
Now in any case of (2.4), it is shown that we can sharpen the inequal-
ity (2.4) in the following way"
(2.7) ]<T(x0, t0), u(y, 0)>] KC’ sup [Du(y, 0),

[alKh lY-xolKto
where C’ depends on C, h and l, but does not depend on (x0, t0).

Let 0() be a continuous function 0 whose support is contained
in a unit sphere with center at the origin, and let Uo(X) be the inverse
Fourier image. We define a sequence of solutions u=(x, t) of (2.1) by
the initial data,

u(x, O) (x)e’OUo(X) y(x)e’oe=’OUo(X) e ,
where y(x) is a function of which takes the value 1 on the set
KL (sufficiently large).

Next apply e-’o to (2.3) after replacing u by u, it becomes

(fle-nx"Un)--ap(x, t; +no)(fle-nx’Un)(2.s)

+ a,,,(x,t; + n$o)
Now let us estimate the function
(2.9) v(x, t)-e-nx’Un(X, t).
By (2.7),
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e-’u(x, t) I(T(x, t), e-’o’(y)e’:OUo(y)}l
I(T(x, t), e(-)’oe"OUo(y)]

<:C’ sup ]D"{e(-)’oe"Uo(y)}].

So we have
(2.10) Ivy(x, t) gC’na exp(n01t), for x supp[fl],
and t [0, ],
where C" is a constant independent of (x, t) and n. Remarking this,
let q() be a function of having its support in a small neighborhood
of 0, and taking the value 1 in a neighborhood of 0. Finally, putting
(2.11) a()
we define the convolution operator q(D). Applying this to (2.8), we
get a new equation localized in both x and spaces"

3t ((D)v)= (, t +no)((D)flv)

3. Energ7 inequalitT. Le us consider he following equation"

aking account of (.), it is shown tha the following inequality holds
for t s [0,

(3.2) l](D)w(x, t)ll 2n’l(D)w(x, t)l- IIf(x, t)l,
dt

where ]. denotes the L-norm in R. In act, on the support

the symbol of a(x, t; +no)behaves like a(x, t;n:0). Now, in

view of (2.11), we have
a)() g constant, n-’.

So, if we develop the commutator Jan(D), ap], it holds"

[, ]= i"O; , t; + (d(D)+R,,

where IlR,p(u)ll g constant, n
where, let us recall, is the dimension of the space and p is the order
of a. The same kind of inequalities holds for [a, a,,]. So, if we
take
(3.3) m h+ l,
we shall have, in view of (2.10), (2.12) and (3.2)"

dt
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v E il/9(vll --vn- exp(nli2t).

Namely

a

c n- exp(n o
Define

This means that we consider all the functions a(’)fl(,)v instead of

av in (2.12). Then we shall have the same kinds of inequalities as
(3.4). So, if we choose Co large enough, summing up all the inequal-
ities thus obtained, we shall have

S’(t) _> -nS(t) c’ n- exp(n $0

Hence

Sn(t) >S(O) exp(nt)
--c’ n’- exp (- n’t) oeXp (--n’r) exp(n o r)dr.

Taking account of lier(D)fl(x)v,(x, O)l]-IlOln(D)(x)ex"ouo(x)l], and in
view of [2], we see that Ilaflv(x, 0)I[ >--0 (> 0) for n large. A fortiori,
it holds S(0)_>0 for n large. Thus,

o (n’t) for te[0,], n large.(3.5) Sn(t) >_-- exp -In fact, for n large, since p> 1, we have n101< --nv. Then
4

t0 exp (--nvv) exp (n o ,v)dv <_to eXp (- -n’v) dv
r) dr

On the other hand, (2.10) shows that S,(t)<_ const, n
This inequality is not compatible with (3.5) unless t-O. Thus we
proved the Theorem in the Introduction by contradiction.
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