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88. The Existence and Uniqueness of the Solution o the
Equations Describing Compressible Viscous Fluid Flow

By Nobutoshi ITAYA

(Comm. by Kinjir.6 KUNUGI, M. J. A., April 13, 1970)

Since J. Leray’s discussion on the nonstationary movement of
incompressible viscous fluid, there appeared a number of papers on it
such as Kiselev-Ladyzhenskaya’s ([1]), but very few reports, if any,
on that of compressible viscous fluid have been made, presumably,
because of the complexities that the system of equations describing it
contains. In view of these circumstances, we try to find a way of
solving this problem firstly from a classical point of view.

1. Introduction. When /(viscosity), k(heat conductivity), and
Cv(specific heat at constant volume) are constants (which does not injure
the mathematical generality), the movement of isotropic Newtonian
fluid is described as follows" (p" density, v" velocity, f" outer force,
p" pressure, 0" absolute temperature, and F(Vv)" dissipation function
(_>0)),

P. + div pv-O,

3p 3p (A [2 Vdiv) v
cp --0 kAO + F--O--OP div pv-cpv.VO,

(1.1)’ p-O &p, (Opp*-radius o convergence o p; p is

assumed to be virially expanded).

We shall consider a Cauchy problem of (1.1) in which the initial
condition is given by

(1.1)" p(x, O)-p0(x)(>O), v(x, O)-vo(X), O(x, O)-O0(x)(_O).
In the first place, we make the ollowing linear problem cor-

respond with the 2nd expression o (1.1).

"v(x, O)--.(x)( H/(R)), ((, t) R),

where , f e HI, O< e.<_e(z, t)<_e< + oo, and HI is the space of
functions (, t) defined on Rr(Rr Ra (0, T)) such that



380 N. ITAYA [Vol. 46,

lgl?)sup Igl< +, Igl(")_--Ig(-) ’-

sup lg(x, t)-g(x’, t)l lg(x, t)-g(x,
Ix- x’ I" + sup

It-- t’ "/
4 +.

The system (1.2) is uniformly parabolic in Petrowsky’s sense, i.e.,
a00 such that max Sup Re fl( x, t) a0(V(x, t) e R),

j lel=
where fl’s are the roots of det(aPo(i)--Ifl) and $ e R.

2.1. The fundamental solution and its estimates. In relation
with (1.2), we consider the ollowing system o ordinary differential
equations,

dV(2.1) --a(y, s)Po(i)V(, t; y, s), Vt=-I(unit matrix), ( C)
dt

and define Z-(ZO, using V as follows" (i, ]=1,2, 3)

(2.2) Z(x--z, t; y,s)(2)-[ exp [io(X-z)]V(o, t; y,s)do.
dRa

As or Z*, we have, e.g., for m(lml 0), and t s" (m, index vector),
IDTZ(x-z, t; y,

(2.3) < C,’’)(t-s)-(’’+)/ exp[-(24aa)-’x-z’t--8
(a depends on P0).

There exists a unique bounded solution o (1.2). Thus, the so-called
fundamental solution F for it is unique, and has an expression

F(x, t z, s)-Z(x-z, t; z, s)
(2.4)

+ Z(x--z, t y, So)J(y, s0; z, s)dy,
Ra

where J satisfies a Volterra type integral equation. For J, we have"

(2.5) .J(x t; z, s)< C(t-s)--’/z exp [-0 Ix-z]
By (2.3), (2.5), etc., it is shown that J is HSlder-continuous with the
exponents a and q/2 in x and t, respectively.

2.2. stimates o the bounded solution of a linear problem. As
Vo(X) e H+"(R) in (1.2),

(2.6) v(x, t)--Vo(X)+.[,ds.[,,F(x,t; z, s)[a(z s)Po(D)vo(Z) + f(z, s)]dz.

Finally, we have, e.g., or ]m]=l, 2"
(2.7) ]Dv(x, t)]g[Dvo(X)]+C’’)t(-’+")/][f +aPovo[")

(]m]-l, 2 ]]. ?) ]. +].(0) r(?2),
(2.7)’ ]Dv(x, t)-Dv(x, t’)]gC)t-t’(-’+")n]f +aPovo[").
C), etc., are positive functions continuous in a0, a, ]a]?), and T, and
monotonically increasing in each parameter.

The equation connected with the 3rd expression o (1.1),

(2.8) (x, t)A0 + g, (, g e H,0a0g + ),
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is, O course, uniformly parabolic in Petrowsky’s sense. So, we can
treat (2.8) in parallel with (1.2). The corresponding constants, etc.,
will be denoted, e.g., by ’C, etc.

The existence of a bounded solution of (1.1)-(1.1)". We

R,
Iml=O Iml =0 iml=2,+ xR
lml =0 Im] =1

((u))r (ur + (u),U (u ((u))r < + ,U
If v e +" in the first expression of (1.1), then p is expressed by

(3.2) p(x, t)-po(Xo(X, t)) exp [--.[, div v(2(s x, t), s)ds,
where 2(s; x, t) is the characteristic curve passing (x, t) and Xo(X, t)
=2(0; x, t). It is easily shown that the correspondence {Xo-Xo(X, t), to
=t} is 1-1, and that Dx,Dxo, etc. ([m[g2)exist, being bounded and
continuous. For 0, we define p by the righthand side of (1.1)’. We
assume in (1.1)" that
(3.3) Po H+"(R), (00gp0g0p*), 0 and Vo e H+"(R).

We take YM v.]] () and choose T such that 0T M log(p*/0)
Now, we define a mapping Gr, rom
(3.4) S,-{(v, 0)" (v, O) e , , (v}r

gM, v(x, O)-vo, O(x,
into ..+"TI ..i+"r, in the following way"

(X, t)--Vo(X td8 (X, t Z, 8 ’O) {NI ---PoVo (Z,
JO JRa v

JO JRa Cvv

p 3p p 30 cp cp
Gv is well-defined, because the following inequalities hold"

NI+ Povo
(")

B((V}o, To) + ((V}o, (0)o, To)
x <V>o, (B0(T00)),

(3.6)
N.+ k d0o B(<V>o, (0)o, To), (VTo e [0,

Cpv

By (2.7), etc., we obtain from (3.5)"

+ B(<V>o, ()o, To)(V);o],
(3.7) (o)Toll Oo11:- +’(<V>o, To) B3(<V>To, (0)To, To),

+ B(<V>ro, (0)to, To)<V>o],
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where A, B, and ’A’0 (T0"0) Taking R we can choose
T’ e (0, T] and M(>0) such that (v, }r,<_M, (0, }r,gM, (v, v},
gM(M,MO. Thus, ff we denote by St, the set of (v, 0)e S, such
that (v, 0) satisfies the above-cited condition, then
(3 8) Gr,Sr, c St, f (H+, H+,) c St, Hr, (/ e (0, 1)),
where **/r, ..fz/r, is a Frchet space defined by a countable system of
seminorms
(3.9) [(v, 0)],r,-- ((v}},r, + (0,r,, (N 1, 2, ),
where the suffix "N, T"’ indicates that "sup" is considered in R,r,
--{(x, t)’]x]<_N+M(T’--t),O<_t<_T’}. After some calculations, it is
shown that St, is a compact convex subset in / HT,,Hr, "+ and that GT,

"/ into itself.is a continuous operator from St, as a subset of +, HT,
Therefore, by Tikhonov’s theorem on the existence o a fixed point in
a locally convex linear topological space, we have"

r4.+ + suchTheorem. For some T’ e (0, T], (v, 0, p) e Hr+, --r, .r,
that (v, O, p) satisfies (1.1)-(1.1)". Moreover, 0(x, t)>_0.

(Br+,-{p" ]p !+ ]vp ,) ze IDtpl,)} T’, used for Rr,).
.2. The problem of uniqueness. Assuming that there are two

solutions, we estimate their difference on the basis of the expression
that it satisfies. More precision is needed than in the case o Theo-
rem 1.

Theorem 2. If, for Po e H+(R), there exists a solution (v, 0, p)
of (1 1)-(1 1)" e (H+ f B+) HI,+ B+,r ,r then the solution is unique
there. (’L’ denotes that Lipschitz’s condition is satisfied).

If the given unctions are smoother, then, taking account of The-
orem 2, we have"

Theorem 3. If
Poe H+(R)(Ofio<_po), vo e Ht/(R), Oo(x) e H/(R),

and f e Hr/, then, for some T’ e (0, T], (v, O, p) e Hr+, Hr+, B+,
such that (v, O, p) satisfies (1.1)-(1.1)".

H+, "= g IDtDxglnT + IDtDg
2r+ [m[ =0 2r+ ]m[ =n-1

(a) ._t__00} (n_, 4)).+ [DtDg x,r,
2r+ Iml
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