81. Notes on Modules. II

By Ferenc A. SzÁsz
(Comm. by Kinjirô Kunugi, m. J. A., April 13, 1970)

Generalizing a well known important result (cf. Jacobson [1], Chapter IV, p. 93) for vector spaces, in our paper all twosided ideals of the total endomorphism ring $E(M)$ of a homogeneous completely reducible module M over an arbitrary ring A are determined. Our result is an English version of the earlier paper of the author [2].

Theorem. Let $E(M)$ be the total endomorphism ring of a homogeneous completely reducible right A-module M over an arbitrary ring A. Then for every nonzero twosided ideal g of $E(M)$ there exists an infinite cardinality \mathfrak{M} such that \mathcal{G} coincides with the set of all endomorphisms γ of M with rang $\gamma M<\mathfrak{M}$

Proof. We assume that rang $M \geqq \boldsymbol{K}_{0}$ over A, being $E(M)$ a simple total matrix ring over a division ring for the particular case

$$
\operatorname{rang} M<\boldsymbol{K}_{0} .
$$

1. Firstly we assert that if g is a twosided ideal of $E(M)$ with $\gamma_{2} \in g$ and
(1)
rang $\gamma_{1} M \leqq$ rang $\gamma_{2} M$
for an arbitrary $\gamma_{1} \in E(M)$, then $\gamma_{1} \in \mathcal{G}$
Namely, for $i=1$ and $i=2$ let N_{i} be the kernel of the endomorphism γ_{i} in M. Then there exists a completely reducible submodule K_{i} of M with $M=N_{i} \oplus K_{i}$. Then (1) implies (2)
rang $K_{1} \leqq$ rang K_{2}
If $K_{i}=\sum \oplus \underset{(i)}{ }\left\{_{\alpha_{j}}\right\}$, then by (2) and by the fact that M is homogeneous, there exists an endomorphism $\delta_{1} \in E(M)$ such that holds

$$
\begin{equation*}
\delta_{1} k_{(1)}=k_{(2)^{2}} \quad k_{\alpha_{1}^{\prime}} \quad \text { and } \quad \delta_{1} N_{1}=0 \tag{3}
\end{equation*}
$$

Here α_{1}^{\prime} denotes an uniquely determined index α_{2} from Γ_{2}, and for $\alpha_{1} \neq \beta_{1}$ one has obviously $\alpha_{1}^{\prime} \neq \beta_{1}^{\prime}\left(\alpha_{1}, \beta_{1} \in \Gamma_{1} ; \alpha_{2_{1}} \beta_{2} \in \Gamma_{2}\right.$, being Γ_{2} the set of indices of fixed basis elements of K_{i}). Consequently, the restriction of δ_{1} on $\delta_{1} K_{1}$ has an inverse element δ_{1}^{-1}.

From an assumed linear connection

$$
\begin{equation*}
\sum_{j=1}^{n} \gamma_{2} \delta_{1} k_{(1)} k_{\alpha j} a_{j}=0 \quad\left(a_{j} \in A\right) \tag{4}
\end{equation*}
$$

follows $\gamma_{2} k^{*}=0$ for the element

$$
k^{*}=\sum_{j=1}^{n} \delta_{1} k_{(1)} k_{\alpha_{j}} a_{j} \in K_{2}
$$

Therefore $k^{*} \in N_{2} \cap K_{2}$, and $k^{*}=0$. There exists an inverse element
δ_{1}^{-1} of the restriction of δ_{1} on $\delta_{1} K_{1}$, so one has

$$
\begin{equation*}
\delta_{1}^{-1} k^{*}=\sum_{j=1(1)}^{n} k_{\alpha_{j}} a_{j}=0 \tag{5}
\end{equation*}
$$

which yields $\underset{(1){ }^{\prime} j}{ } k_{j} a_{j}=0$ for every $j=1,2, \cdots, n$, forming $\sum\left\{k_{\alpha}\right\}$ a direct sum. Therefore, the elements $\gamma_{2} \delta_{1} k_{(1)}$ are linearly independent over A $\left(\alpha \in \Gamma_{1}\right)$. By the fact that M is homogeneous, there exists an element $\delta_{2} \in E(M)$ satisfying

$$
\begin{equation*}
\delta_{2}\left(\gamma \delta_{1} k_{(1)}\right)=\gamma_{1(1)} k_{\alpha} . \tag{6}
\end{equation*}
$$

Analysing the difference $\gamma_{0}=\delta_{2} \gamma_{2} \delta_{1}-\gamma_{1}$, we conclude, $\gamma_{0}=0$, that is
(7)

$$
\gamma_{1}=\delta_{2} \gamma_{2} \delta_{1} \in \mathcal{G}
$$

which completes the proof of Assertion 1.
2. Secondly, it can be shown that for rang $M \geqq \boldsymbol{K}_{0}$ and for every nonzero twosided ideal \mathcal{G} of $E(M)$, the endomorphisms γ with condition rang $\gamma M<\mathcal{K}_{0}$ are contained in \mathcal{g}, and all these endomorphisms γ form a twosided ideal F of $E(M)$.

Namely, for the direct composition $M=\Sigma \oplus\left\{m_{\alpha}\right\}(\alpha \in \Gamma)$ we define the endomorphisms $\varepsilon_{\beta} \in E(M)$ by

$$
\begin{gather*}
\varepsilon_{\beta} m_{\alpha}=\delta_{\alpha \beta} m_{\beta} . \\
\varepsilon_{\beta} m_{\alpha} a=\delta_{\alpha \beta} m_{\alpha} \alpha(\alpha, \beta \in \Gamma, a \in A) \tag{8}
\end{gather*}
$$

where $\delta_{\alpha \beta}$ denotes Kronecker's delta symbol. Clearly rang $\varepsilon_{\alpha} M=1$ and thus by Assertion 1, holds $\varepsilon_{\beta} \in \mathcal{G}$ for every β. Consequently

$$
\begin{equation*}
\delta_{\beta_{1}}+\varepsilon_{\beta_{2}}+\cdots+\varepsilon_{\beta_{3}} \in \mathcal{G} \tag{9}
\end{equation*}
$$

which verifies the existence of endomorphisms $\gamma \in \mathcal{G}$ with rang $\gamma M=n$ for every n.

From this follows already every statement of Assertion 2.
3. Thirdly, we prove that there exists for every nonzero ideal \mathcal{G} of $E(M)$ an infinite cardinality \mathcal{M}, such that \mathcal{G} consists of every endomorphism $\gamma \in E(M)$ satisfying rang $\gamma M<\mathfrak{M}$

Let \mathfrak{M} be namely the least (infinite) cardinality satisfying rang $\gamma M<\mathfrak{M}$ for every $\gamma \in \mathcal{G}$. Clearly there exists such a cardinality. By Assertion 2, one has $F \subseteq \mathcal{G}$ and thus $\mathfrak{M} \geqq \boldsymbol{K}_{0}$.

If rang $M<\mathfrak{M}$, then by definition of \mathfrak{M} there exists an element $\gamma \in \mathcal{G}$ with the condition rang $\gamma M=$ rang M and by Assertion 1 also $\mathcal{g}=E(M)$.

Assuming that $g \neq E(M)$ and $g \neq 0$, in case $\mathfrak{M}=\boldsymbol{K}_{0}$ one has $g=F$ by Assertion 2.

Furthermore, in case $\mathfrak{M}>\boldsymbol{K}_{0}$ and $\mathfrak{M} \leqq$ rang M the condition rang $\eta M<\mathfrak{M}$ and definition of \mathfrak{M} imply the existence of an endomorphism $\vartheta \in \mathcal{G}$, with
(10)

$$
\operatorname{rang} \vartheta M \geqq \operatorname{rang} \eta M
$$

whence by Assertion 1 follows $\eta \in \mathcal{G}$.
These Assertions 1, 2 and 3 complete the proof of the Theorem.

References

[1] N. Jacobson: Structure of Rings. Providence (1964).
[2] F. Szász: A teljesen reducibilis operátormodulusokról (On the completely reducible operator modules). Magyar Tudományos Akadémia. III. Osztályának Közleményei, 11 (4), 417-425 (1961).

