81. Notes on Modules. II

By Ferenc A. Szász

(Comm. by Kinjirô KUNUGI, M. J. A., April 13, 1970)

Generalizing a well known important result (cf. Jacobson [1], Chapter IV, p. 93) for vector spaces, in our paper all twosided ideals of the total endomorphism ring E(M) of a homogeneous completely reducible module M over an arbitrary ring A are determined. Our result is an English version of the earlier paper of the author [2].

Theorem. Let E(M) be the total endomorphism ring of a homogeneous completely reducible right A-module M over an arbitrary ring A. Then for every nonzero twosided ideal \mathcal{J} of E(M) there exists an infinite cardinality \mathfrak{M} such that \mathcal{J} coincides with the set of all endomorphisms γ of M with rang $\gamma M < \mathfrak{M}$

Proof. We assume that rang $M \ge \aleph_0$ over A, being E(M) a simple total matrix ring over a division ring for the particular case

$$\operatorname{rang} M \,{<}\, {
m H}_0.$$

1. Firstly we assert that if \mathcal{J} is a twosided ideal of E(M) with $\gamma_2 \in \mathcal{J}$ and

(1) $\operatorname{rang} \gamma_1 M \leq \operatorname{rang} \gamma_2 M$

for an arbitrary $\gamma_1 \in E(M)$, then $\gamma_1 \in \mathcal{J}$

Namely, for i=1 and i=2 let N_i be the kernel of the endomorphism γ_i in M. Then there exists a completely reducible submodule K_i of M with $M=N_i \oplus K_i$. Then (1) implies

(2) rang $K_1 \leq \operatorname{rang} K_2$ If $K_i = \sum \bigoplus_{\substack{\{i\} \\ (i) \\ (i)}} \{k_{aj}\}$, then by (2) and by the fact that M is homogeneous, there exists an endomorphism $\delta_1 \in E(M)$ such that holds (3) $\delta_i k_i = k_i$ and $\delta_i N_i = 0$

$$\begin{array}{c} (3) \\ & \delta_1 k_{\alpha_1} = k_{\alpha'_1} \\ & (1) \\ & (2) \\ \end{array} \text{ and } \quad \delta_1 N_1 = 0$$

Here α'_1 denotes an uniquely determined index α_2 from Γ_2 , and for $\alpha_1 \neq \beta_1$ one has obviously $\alpha'_1 \neq \beta'_1 (\alpha_1, \beta_1 \in \Gamma_1; \alpha_{2_1}\beta_2 \in \Gamma_2)$, being Γ_2 the set of indices of fixed basis elements of K_i). Consequently, the restriction of δ_1 on $\delta_1 K_1$ has an inverse element δ_1^{-1} .

From an assumed linear connection

$$(4) \qquad \qquad \sum_{j=1}^{n} \gamma_2 \delta_1 k_{\alpha_j} \alpha_j = 0 \quad (\alpha_j \in A)$$

follows $\gamma_2 k^* = 0$ for the element

$$k^* = \sum_{j=1}^n \delta_1 k_{\alpha_j} a_j \in K_2$$

Therefore $k^* \in N_2 \cap K_2$, and $k^*=0$. There exists an inverse element

(5)
$$\delta_1^{-1}k^* = \sum_{j=1(1)}^n k_{\alpha_j} a_j = 0$$

which yields $k_{\alpha_j} a_j = 0$ for every $j = 1, 2, \dots, n$, forming $\sum \{k_{\alpha}\}$ a direct sum. Therefore, the elements $\gamma_2 \delta_1 k_{\alpha}$ are linearly independent over A $(\alpha \in \Gamma_1)$. By the fact that M is homogeneous, there exists an element $\delta_2 \in E(M)$ satisfying (6) $\delta_2(\gamma \delta_1 k_{\alpha}) = \gamma_1 k_{\alpha}$.

(6) $\delta_2(\gamma \delta_1 k_{\alpha}) = \gamma_1 k_{\alpha}$. Analysing the difference $\gamma_0 = \delta_2 \gamma_2 \delta_1 - \gamma_1$, we conclude, $\gamma_0 = 0$, that is (7) $\gamma_1 = \delta_2 \gamma_2 \delta_1 \in \mathcal{J}$, which completes the proof of Assertion 1.

2. Secondly, it can be shown that for rang $M \ge \aleph_0$ and for every nonzero twosided ideal \mathcal{J} of E(M), the endomorphisms γ with condition rang $\gamma M < \aleph_0$ are contained in \mathcal{J} , and all these endomorphisms γ

form a twosided ideal F of E(M). Namely, for the direct composition $M = \Sigma \bigoplus \{m_{\alpha}\} (\alpha \in \Gamma)$ we define the endomorphisms $\varepsilon_{\beta} \in E(M)$ by

(8)
$$\varepsilon_{\beta}m_{\alpha} = \delta_{\alpha\beta}m_{\beta}.$$
$$\varepsilon_{\beta}m_{\alpha}a = \delta_{\alpha\beta}m_{\alpha}a(\alpha_{1}\beta \in \Gamma, a \in A)$$

where $\delta_{\alpha\beta}$ denotes Kronecker's delta symbol. Clearly rang $\varepsilon_{\alpha}M=1$ and thus by Assertion 1, holds $\varepsilon_{\beta} \in \mathcal{J}$ for every β . Consequently (9) $\delta_{\beta_1} + \varepsilon_{\beta_2} + \cdots + \varepsilon_{\beta_3} \in \mathcal{J}$

which verifies the existence of endomorphisms $\gamma \in \mathcal{J}$ with rang $\gamma M = n$ for every n.

From this follows already every statement of Assertion 2.

3. Thirdly, we prove that there exists for every nonzero ideal \mathcal{J} of E(M) an infinite cardinality \mathfrak{M} , such that \mathcal{J} consists of every endomorphism $\gamma \in E(M)$ satisfying rang $\gamma M < \mathfrak{M}$

Let \mathfrak{M} be namely the least (infinite) cardinality satisfying rang $\gamma M < \mathfrak{M}$ for every $\gamma \in \mathcal{J}$. Clearly there exists such a cardinality. By Assertion 2, one has $F \subseteq \mathcal{J}$ and thus $\mathfrak{M} \geq \aleph_0$.

If rang $M < \mathfrak{M}$, then by definition of \mathfrak{M} there exists an element $\gamma \in \mathcal{J}$ with the condition rang $\gamma M = \operatorname{rang} M$ and by Assertion 1 also $\mathcal{J} = E(M)$.

Assuming that $\mathcal{J} \neq E(M)$ and $\mathcal{J} \neq 0$, in case $\mathfrak{M} = \aleph_0$ one has $\mathcal{J} = F$ by Assertion 2.

Furthermore, in case $\mathfrak{M} > \aleph_0$ and $\mathfrak{M} \leq \operatorname{rang} M$ the condition rang $\eta M < \mathfrak{M}$ and definition of \mathfrak{M} imply the existence of an endomorphism $\vartheta \in \mathcal{J}$, with

(10) $\operatorname{rang} \vartheta M \ge \operatorname{rang} \eta M$

whence by Assertion 1 follows $\eta \in \mathcal{J}$.

These Assertions 1, 2 and 3 complete the proof of the Theorem.

[Vol. 46,

352

No. 4]

References

- [1] N. Jacobson: Structure of Rings. Providence (1964).
- [2] F. Szász: A teljesen reducibilis operátormodulusokról (On the completely reducible operator modules). Magyar Tudományos Akadémia. III. Osztályának Közleményei, 11 (4), 417–425 (1961).