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In [1] we have introduced strange differential Hop structures
arising rom K-theory and have called them differential near Hopf
algebras. One o the purposes oi this paper is to find a general theory
in order to make these strange differential Hopf algebras fit with the
usual differential Hop algebras.

Our main result is a generalization o a criterion of coprimitivity
of Hopf algebras [5]. This enables us to use biprimitive orm spectral
sequences due to Browder [3] in researches of K-theory of H-spaces.

The detailed proofs will be published elsewhere.
1 By a G-module M-MoM we mean a Z.-graded module over

a field K. M has a canonical involution a such that

alMo=l and
All algebraic structures such as algebras, coalgebras, differential

algebras, etc., will be understood those over certain underlying G-
modules [1]. In the present work, all algebras (or coalgebras) are
equipped with augmentations and units (or counits), but are not neces-
sarily associative.

Let M and N be differential G-modules. M(R)N is also a differen-
tial G-module. The usual switching mp

T: M(R)N-N(R)M
is an isomorphism of differential G-modules. Pick 2 e K. We define
the 2-modified switching map

T M(R)NN(R)M
by T=(l+2.da(R)d)T. T is also an isomorphism o differential G-
modules and involutive, i.e., T]- 1.

Generalizing the above T, we can define the 2-modified permuta-
tions of tensor factors so that (R) acts as a group of automorphisms of
the differential G-module M(R)" M(R). (R)M.

Our first basic idea is to replace the switching maps and permuta-
tions o tensor actors in the ordinary theory o Hopf algebras [5] by
2-modified ones and to construct a theory suitable to Hopf structures
derived rom mod p K-theory.

2. Let A and B be differential algebras (or coalgebras). Putting
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((R))(I(R)T(R)I) A(R)B(R)A(R)BA(R)B
(or

(I(R)T(R)I)((R)) A(R)BA(R)B(R)A(R)B)
and defining the augmentation, unit (or counit) and differential as
usual, A@B becomes a differential algebra (or coalgebra), which has
a multiplication (or comultiplication @) different from that of the
ordinary tensor product. We call this the 2-modified tensor product
of A and B and denote it by (A@B). Thus (A@B)o=A@B is the ordi-
nary tensor product.

If a differential algebra (or coalgebra) A satisfies the relation

T (or T ),
then we call A is 2-commutative.

3. Let A be an algebra (or coalgebra). We generalize Browder’s
filtration [1, 3] to non-associative cases and obtain a decreasing filtra-
tion {FA, k0} of the algebra A (or an increasing filtration
{GA, k0} of the coalgebra A). The associated graded G-module is
denoted by

Eo(A)-o EA, EA-FA/F+A,
for an algebra A, and by

oE(A) o oEA, oEA GA/G-A,
for a coalgebra A. The usual basic properties of these filtrations
[1, 3] are retained.

If an algebra (or coalgebra) A satisfies the following condition
(3.1) z0 FA={O} (or 0 GA=A)

we call A semi-connected. Remark that a graded connected algebra
(or coalgebra) is semi-connected.

If A is semi-connected and of finite dimension, then E0(A)(or oE(A))
is isomorphic to A as a G-module.

Usually a decreasing filtration topologizes A. For an algebra A
we topologize A by an F-filtration. Then A is a Hausdorff space if it
is semi-connected.

(3.2) Let A be a semi-connected algebra (or coalgebra). Then
={0} if and only if Q(A)={O} (or P(A)={O}).

Let f:AB be a morphism of algebras. If f(A) is densein B
(topologized by the F-filtration) then we call f almost sur]ective.

(3.3) Let f: AB be a morphism of algebras, f: AB is almost
sur]ective if and only if Q(f)" Q(A)Q(B) is sur]ective.

As a dual to the above proposition we obtain
(3.3*) Let f AB be a morphism of coalgebras and assume A

to be semi-connected, f" AB is in]ective if and only if P(f)"
P(A)P(B) is in]ective.

4. Let A be a (differential) algebra as well as a (differential)
coalgebra. If the unit and the augmentation of the algebra coincide
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with the augmentation and the counit of the coalgebra, then A is called
a (differential) quasi pre Hopf algebra. Furthermore, if it is associ-
ative as an algebra as well as a coalgebra, it is called a (differential)
pre Hop algebra [1].

If A is a differential quasi pre Hop algebra, then we can discuss
the F- and G-filtration o A. Both filtrations are d-stable [1] and
determine the spectral sequences

E(A)-- ,_o EA and E(A)-_o EnA,
r_>_0, as usual. These are spectral sequences o algebras and
coalgebras, respectively.

If a differential (quasi) pre Hopf algebra A satisfies
(4.1) ((R))(1(R)T(R)1)((R))

or some 2 e K, then we call A a 2-modified differential (quasi) Hopf
algebra, or simply a (quasi) (d, 2)-Hopf algebra. Thus, to say that A
is a quasi (d, 2)-Hop2 algebra is equivalent to say that

A-(A(R)A)
is a morphism o differential algebras or that

" (A(R)A)-A
is a morphism of differential coalgebras. Thus and induces
morphisms

E()" E(A)E((A(R)A))
and

E() E((A(R)n))-E(A
of terms of spectral sequences or r>__0. Since there hold Kiinneth
relations for 2-modified tensor products in each term of both spectral
sequences, E() (or E()) defines a comultiplication (or a multiplica-
tion) in E(A)(or E(A)), and the latter becomes a graded connected
quasi (d, )-Hop algebra or r-0 and a graded connected quasi dif-
ferential Hop algebra or r> 1.

(4.2) Eo(A) is primitive and oE(A) is coprimitive. (C., [3].)
5. Let A be a differential algebra (or coalgebra) and 2 e K. Let

p--Char K and we suppose pC0. A 2-modified cyclic permutation

C" (A(R))(A(R)) is a morphism of differential algebras (or coalgebras).
Put zL-1 C and X-- Define/i=0

A Ker /Im z/
and

A Ker //Im X.
Then we have

(5.1) i) When A is a differential algebra, A is a differential
algebra, ii) When A is a differential coalgebra, qA is a differential
coalgebra.

Now let A be a (quasi) (d, 2)-Hopf algebra for 2 e K. A and
qA are differential algebra and coalgebra respectively. On the other
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hand we can prove that the canonical map rAqA is an isomorphism.
Identifying them by this canonical isomorphism we get

(5.2) @A-A is a (quasi) Hopf algebra.
We call q)A the derived (quasi) Hopf algebra of A.

6. Let A be a quasi (d, )-Hopf algebra. Assume that p=/=0 and
the multiplication .(or the comultiplication) of A is associative and -commutative. We define a map

" Ker X-+A (or ?" A-*Coker X)
by $-v_1 i (or ]=@v_1), where o_-((R)1)... (if(R)l(R)...(R)1)"
(A(R))--+ A, @_ (@ (R) 1 (R) (R) 1) (@ (R) 1)@" A - (A(R)), i" Ker 2:
(A(R)) is the inclusion and " (A(R))-*Coker Y is the projection.
Since (or @) is -commutative we have

_A,=O (or A_=O).
Passing to quotient (or restricting range) we have the induced map

" q)A-A (or ?" A-*FA).
Here we obtain

(6.1) The above map $(or 2) is a morphism of (d, 2)-Hopf
algebras.

Now we can state our main theorems.
Theorem 1. Let K and A be a quasi (d, 2)-Hopf algebra which

is semi-connected as a coalgebra. If A is coprimitive then the multi-
plication is associative, 2-commutative and, when p:/=0, =zero map.

The proof is based on (3.3*). Dually we obtain
Theorem 2. Let e K and A be a quasi (d, 2)-Hopf algebra which

is semi-connected as an algebra. If A is primitive then the comulti-
plication is associative, 2-commutative and, when p=/=0 and A is
semi-connected as an algebra, ?=zero map.

7. As inverses to the above Theorems we obtain the following
Theorem 3. Let e K and A be a quasi (d, 2)-Hopf algebra which

is semi-connected as an algebra. Suppose that p is odd or that p-2
and d--0. If the multiplication is associative, 2-commutative and
-zero map, then A is coprimitive.

Theorem 4. Let e K and A be a quasi (d, 2)-Hopf algebra which
is semi-connected as a coalgebra. Suppose that p is odd or that p-2
and 2d=0. If the comultiplication is associative, 2-commutative
and ?--zero map, then A is primitive.

In case p-2 and 2 d:/:0 these theorems are not proved. Never-
theless this is not an obstruction to our applications. In fact,

Theorem 5. The conchtsions of Theorems 1 and 2 are hereditary
to H(A).

If A is graded and connected, then A, rA and H(A) are semi-
connected as algebras as well as coalgebras. Thus

Theorem 6. Let p =p 0 and A be a quasi (d, 2)-Hopf algebra. Then
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E(A) is primitive and E(A) is coprimitive for all r>O. If A is
primitive or coprimitive then E(A) or E(A) is biprimitive for all r> O.

8. Let p :/: 0 and let A be a (d, 2)-Hopf algebra of finite dimension.
If A is semi-connected as an algebra then oE(Eo(A)) is a biprimitive
(d, 2)-Hopf algebra which is isomorphic to A as a G-module. Thus
it is a biprimitive form of A [3]. When A is semi-connected as a
coalgebra Eo(oE(A))is a biprimitive orm of A. Thus, if A is semi-
connected either as an algebra or as a coalgebra, the assumption of
finite dimensionality allows us to discuss the "biprimitive form spectral
sequence" due to Brower [3].

Let X be a connected H-space which has the homotopy type of a
finite CW-complex. K*(X Z) [2] is an example of quasi (d, 2)-Hopf
algebras. Since X is finite dimensional the usual filtration of
K*(X;Z), defined by skeletons, is multiplicative and tends to zero.
This filtration is superior to our F-filtration, so K*(X;Z) is semi-
connected as an algebra. The E-term is the d-homology of E
K*(X; Z), and its F-filtration is majorated by the induced filtration

which tends to zero. Thus the E-term is semi-connected as an algebra.
Similarly, every term of the Bockstein spectral sequence is semi-con-
nected as an algebra. Thus we obtain

Theorem 7. Let X be a connected H-space which has the homo-
topy type of a finite CW-complex. We have a biprimitive form
spectral sequence which starts from a biprimitive form of K*(X Z)
and ends at that of (K*(X)/Torsions)(R)Z.

This can be used to compute some K*(G).
Remark. K*(X;Z) is not necessarily semi-connected as a

coalgebra. An example is K*(SO(n); Z2).
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