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75. l.spaces over Banach Spaces and an Application*

By Noboru YAMAMOT0
College of General Education, Osaka University

(Comm. by Kenjiro SHOD/k, M. J./k., April 13, 1970)

1o Polynomial maps (more generally, analytic maps) o Banach
spaces have been studied by several authors [1], [2]. In this note we
shall study a polynomial map by 2actoring into a composition o a
linear map and a map looks like the exponential map. For this purpose
we shall define a new Banach space lE over a Banach space E. This
treatment of polynomial maps enable us to reduce some problems on
polynomial maps to the well known facts on linear maps. As a simple
example we shall give a proo o the regularity theorem or a solution
of semi-linear polynomial elliptic differential equation.

Let E be a real or complex Banach space with norm II. We
shall denote by E(R)n the completion of the nt tensor power o E with
respect to the projective topology. The norm ]] o x in E(R)n is defined
by Ilxll=in {F, IIx)ll... IIx()ll Ix= F, x)(R) .(R)x()}.

Let lE(l<=p c) be the completion of the (algebraic) vector space

(E(R) with the /-norm I1 defined by Ilxll IIxll or x- F, Xn,
=1 lP

x e E(R). Thus an element x of lE can be written as an infinite sum
x-F,x of elements x e E(R). It is clear that l’E is a Banach space:
As usual, we have lElqE if p<q and the inclusion is continuous.
Note that if E--R or C, lE is canonically isomorphic to the ordinary
/’-space. If E is a separable Hilbert space, we can define an inner
product in lE which then is again a Hilbert space.

Let E be the subspace of symmetric elements of E(R)n, the Banach

subspace lE of. l’E is defined to be the completion of E with the

/’-norm.

For two Banach spaces E and F, the ollowing proposition is
easily proved.

Proposition 1. (1) I(EF)IEIF, l(EF)lElF. (2)
l(E(R)F)- lE(R)lF, l(E(R)F)-lE(R)lF. (3) If E is finite dimensional
and p 1, (lpE)’- lqE and (lE)’ lqE’, where E’ is the dual space of E

L +p q
A Banach space E is a Banach algebra if there is a continuous
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linear map /" E(R)E--.E such that I!/11_<_1 and l(l(R)id)-/(id(R)l).
Then we can define a linear map /" E(R)-E, for n3, such that
I]nll and p(_+@Z)-Z(z@id) or lin where Z=Z and
p=id. Let m" I’EoE be a map defined by m(Ex)=Ep(x),
x e E, then m is a continuous linear map with [m[l. We also
define a continuous linear map m" IEoE by m=m] lE.

Let E and F be Banach spaces and f" EoF(i= 1, ., n) be continu-
ous linear maps, then a continuous linear map f@...@f" E@nF@n

is defined by (A...fD(Ex... = ] .x) EA(x))...
In fact we have [[A@" ’@AI[IiAI[" "i[fl[. If f" EF is a linear
map with [[f[] 1, we can define a linear map lPf" l;ElF by (1;f)
(Xn)= f(x), x e Ee, where fen_f@. @f (n copies). Then we
have I]lpfil ]If I], and hence l"f is continuous. It is easily seen that
(1;f)(lE)clF, and lv(gof)=lgol;f for linear maps f" EF and g" F
oG of Banach spaces with I]f[[gl and []g[[ gl.

Let U(E) be the group of linear isometries of E, and I;U(E)
={l’f]fe U(E)}. Then we have

Proposition 2. lvU(E) is a closed subgroup of the group U(lE)
of linear isometries of lE.

Let f" EoF be a (not necessarily linear) map of Banach spaces.
Then f is differentiable at x0 e E if there is a continuous linear map
df(xo)" EF such that lim ([[f(Xo+V)- f(Xo)-df(xo)(v)[[v)/[[v[[=O.
The kt derivative df EoL(E, F) (=L(E, F)) is defined inductively
by df=d(d-f), and f is of class C if df is continuous. It is easily
verified that d(A@...@f)=Xd’f@...@df, where the sum ranges
over all n-tuples (k,..., kn) of non-negative integers with k +... +k
=k. If dimE=m(, the partial derivatives Df" EL(E,R)
(i-1, ...,m) is similarly defined and we have D"(A@. .@f)

D"’f@... @D",f, where the sum ranges over all n-tuples of multi-
indices (a,..., a) with a +... +a=a.

2. Let E be a Banach space. We define a map e" E12E, or
=> 1, by e(x)-xn, x e E. Then easily we haveany P

Theorem 1. The map e’EolE is of class C.
A map f" EF of Banach spaces is called a polynomial map if

there is a continuous linear map " IEF, for some p1, such that

f=oe. By definition, a polynomial map is of class C.
Let P(E, F) be the vector space of polynomial maps from E to F.
Theorem 2. If E admits a basis, then, the map e*" L(IE,F)

P(E, F) defined by e*()-qoe, for e L(IE, F), is an isomorphism
for any p, 1p .

n--1
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for x, ..., x e E, where S is the nth symmetric group and a’ ranges
over all combinations of (n-k) elements of the set {1,..., n}.

This Lemma is easily checked by a simple calculation.
Proof of Theorem 2. By definition, e* is a homomorphism onto

P(E, F). Let {u, ..., Un,’’’} be a basis or E, then {u,,...,=
aSn

(R)...(R)u(,)]i<i.<...<in}formsabasis for E. LeteL(lE,F)
be a map such that p(e(x))-O for any x e E. Then or each base u
of E and for any real 2 =/:0, we have 0-(e(2u))-F,-.-p(un) so that

u)-O, hence (--2(u))-0. Induc-(u)-lim

tively, we assume that (u, ,)-0 for any u:, with kn. Then
by the above Lemma, or any u,..., e E7 and or any real 2 g:0,

t--1

O=n !(e( F, (-1)( u,(,)+... + u,(_)))
k=l

=2n(u, )+2/(U,, )
hence (u,,...,.)-- lim (-- 2(u,,...,))-- 0. This implies that -0 so

0

that e* is an isomorphism, q.e.d.
Remark. The assumption that E admits a basis can be removed.
We shall define a topology on P(E, F) such that e* is a homeo-

morphism, and call it the/-topology o P(E, F).

We can imbed E- E? in lE or each 1 <:p c, and then let
k=l

E be the supplementary subspace in lE. A polynomial map f
=poe’E-F is said to be o degree n if (?(x)-0 or xe. The
vector space Pn(E, F) o polynomial maps oi degree n rom E to F is a
subspace of P(E,F). We have Pn(E,F)cP(E,F) if n<_m and PI(E,F)
is canonically isomorphic to L(E, F). For three Banach spaces E, F
and G, we have

Proposition :. P(F, G)oPn(E, F)cP(E, G) and L(F, G)oP(E, F)
c P(E, G).

It does not hold that P(F, G)oL(E, F)cP(E, G), but i f:E-F is
a linear map with I]fll_<_l then we have P(F, G)ofcP(E, G).

:o In this section we shall reely use the methods and results o
Palais [3; Chap. IV, VIII, XI].

Let M be a (finite dimensional) compact C manifold without
boundary and with a fixed strictly positive smooth measure. For a
(finite dimensional) hermitian vector bundle $ over M, we define a
Hilbert vector bundle l over M by 1$- l with the group lU()

where U($) is the group o unitary transformations o . Thus the
structure of 1] depends on the hermitian structure of $. The map
e" $I, x e M, induces a C bundle map e’l.
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A bundle map f"- is a polynomial map if there is a bundle
homomorphism " l-] such that f-oe. Let Pol(,]) be the
vector space of polynomial maps rom $ to ], then by Theorem 2 we
have an isomorphism e*" Hom (/$, )-Pol ($, ]).

Let C() be the vector space o (global) C sections o the bundle
$. For two hermitian vector bundles and ] over M, L(, ]) is the
vector bundle of linear maps $-], or each x eM, such that
CL($, ])--Hom($, ]). Similarly P(, ]) is defined to be the vector
bundle such that CP(, ])-Pol ($, ]). We have again a bundle iso-
morphism e*" L(l, )P($, ).

A map f" C()C() is said to be polynomial (in narrow sense)
if there is a linear map (f" C(I$)C(y) such that f-fo where
’C($)-C (l$) is the map induced by e" -l.

Let A($, ]) be a vector space of linear operators rom to ], that
is, an element of A($, ]) is a linear map T" C($)C(), then we
define a vector space PA(, ) of polynomial operators rom to by
PA(, )--{T" C()C()IT-o or some e A(l, ])}. In this
case the map .*" A(l, y)-PA($, ) is only an epimorphism in general.

Let T*(M) be the cotangent bundle o M and T’(M) be the bundle
T*(M) with the zero section removed. Let u.T’(M)-oM be the pro-
jection and be a vector bundle over M, then 7:*() is a vector bundle
over T’(M) and Pol (u*, u*]) consists o unctions a on T’(M) such
that a(v, x) is a polynomial map of into ]. We define a vector
space P Smbl(, ]) by P Smbl(, ])-(a e Pol (*, *)la(pv, x)
-pa(v, x) if p 0}. Again we have an isomorphism e*" Smbl(/$, ])
P Smbl($, ).

In [3], several vector spaces o linear operators are defined or
hermitian vector bundles over M. These are OPt(S, ]), Int($, ]) and
Diff,(S, ]) etc. For precise definitions and properties of these spaces
we refer to [3]. From these we can define corresponding spaces of
polynomial operators, that is, POP(, 7]), P Int(, ]) and P Diff(, ])
etc.

In [3; Chap. XI], it is proved that the sequence 0-OP_($, ])

-Int(, ])--->Smbl($, )0 is exact or any hermitian vector bundles, ] over M where a" Int($,i)-*Smbl($,]) is the symbol map.
Although g* are only epimorphisms we have

Proposition 4. The sequence 0POP_($, ])-P Int($, ])
--->P Smbl($, )0 is exact for any hermitian vector bundles ,
over M.

Since Smbl($, ])P Smbl($, ]), we call a polynomial opera-
tor T e P Int(,]) semilinear if (T) is contained in Smbl(, ]).



No. 4] /P-spaces over Banach Spaces and Application 331

A semilinear polynomial operator T e P Int(, 2) is called k order
elliptic i (T)(v,x) maps $ isomorphically onto 2 or all (v,x)
e T’(M). It is proved in [3] that if a linear operator S e Int(, 2) is
kt order elliptic then there exists S’ e Int_(], ) which is -kt order
elliptic such that a_(S’)=a(S)-, S’S-I e OP_(, ) and SS’
-I e OP_(], 2). Similarly we have

Proposition 5. If a semilinear polynomial operator T e P Int(, 2)
is kth order elliptic then there is a linear operator T’ e Int_(], ) which
is -kth order elliptic such that a(T’)=(T)-1 and T’T--I
e POP_(, ).

Now, analogously to Theorem 5 of [3; Chap. XI], we give a proo
to the (well-known) theorem o regularity of a solution of semilinear
elliptic polynomial equation.

Theorem 3. Let T be a semilinear elliptic polynomial operator
in P Int(, 2). If f e H-() and Tf e Hr(y) then f e Hr+(), where
H() is the Sobolev spaces on C() and T" H-()H-() is the
extension of T. (For a precise definition, see [3])

Proof. Since H-()= U H($), f e H($) for some m. By in-
duction, it suffices to prove that if m< r+ k then f e H +(). By the
above Proposition, there is a linear operator T’ e Int_(], ) which is
-k order elliptic such that T’T--I e POP_($, $), so that (T’Tf-f)
e H+’(). On the other hand, since f e H(]), ’fe H+()
H+’(). Hence we have fe H+’(). q.e.d.
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