75. P-spaces over Banach Spaces and an Application^{*)}

By Noboru YAMAMOTO

College of General Education, Osaka University

(Comm. by Kenjiro Shoda, M. J. A., April 13, 1970)

1. Polynomial maps (more generally, analytic maps) of Banach spaces have been studied by several authors [1], [2]. In this note we shall study a polynomial map by factoring into a composition of a linear map and a map looks like the exponential map. For this purpose we shall define a new Banach space $l_s^p E$ over a Banach space E. This treatment of polynomial maps enable us to reduce some problems on polynomial maps to the well known facts on linear maps. As a simple example we shall give a proof of the regularity theorem for a solution of semi-linear polynomial elliptic differential equation.

Let *E* be a real or complex Banach space with norm || ||. We shall denote by $E^{\otimes n}$ the completion of the *n*th tensor power of *E* with respect to the projective topology. The norm $|| ||_n$ of *x* in $E^{\otimes n}$ is defined by $||x||_n = \inf \{ \sum ||x_1^{(i)}|| \cdots ||x_n^{(i)}|| |x = \sum x_1^{(i)} \otimes \cdots \otimes x_n^{(i)} \}.$

Let $l^p E(1 \le p < \infty)$ be the completion of the (algebraic) vector space $\bigoplus_{n=1}^{\infty} E^{\otimes n}$ with the l^p -norm $|| ||_{l^p}$ defined by $||x||_{l^p}^p = \sum ||x_n||_n^p$, for $x = \sum x_n$, $x_n \in E^{\otimes n}$. Thus an element x of $l^p E$ can be written as an infinite sum $x = \sum x_n$ of elements $x_n \in E^{\otimes n}$. It is clear that $l^p E$ is a Banach space. As usual, we have $l^p E \subset l^q E$ if $p \le q$ and the inclusion is continuous. Note that if $E = \mathbf{R}$ or C, $l^p E$ is canonically isomorphic to the ordinary l^p -space. If E is a separable Hilbert space, we can define an inner product in $l^2 E$ which then is again a Hilbert space.

Let $E_s^{\otimes n}$ be the subspace of symmetric elements of $E^{\otimes n}$, the Banach subspace $l_s^p E$ of $l^p E$ is defined to be the completion of $\bigoplus_{n=1}^{\infty} E_s^{\otimes n}$ with the l^p -norm.

For two Banach spaces E and F, the following proposition is easily proved.

Proposition 1. (1) $l^{p}(E \oplus F) \subset l^{p}E \oplus l^{p}F$, $l^{p}_{s}(E \oplus F) \subset l^{p}_{s}E \oplus l^{p}_{s}F$. (2) $l^{p}(E \otimes F) \cong l^{p}E \otimes l^{p}F$, $l^{p}_{s}(E \otimes F) \cong l^{p}E \otimes l^{p}F$. (3) If E is finite dimensional and p > 1, $(l^{p}E)' \cong l^{q}E'$ and $(l^{p}_{s}E)' \cong l^{q}_{s}E'$, where E' is the dual space of E and $\frac{1}{p} + \frac{1}{q} = 1$.

A Banach space E is a Banach algebra if there is a continuous

^{*)} Dedicated to Professor Atuo Komatu on his 60th birthday.

Ν. ΥΑΜΑΜΟΤΟ

linear map $\mu: E \otimes E \to E$ such that $\|\mu\| \leq 1$ and $\mu(\mu \otimes id_E) = \mu(id_E \otimes \mu)$. Then we can define a linear map $\mu_n: E^{\otimes n} \to E$, for $n \geq 3$, such that $\|\mu_n\| \leq 1$ and $\mu(\mu_{n-i+1} \otimes \mu_i) = \mu(\mu_n \otimes id_E)$ for $1 \leq i \leq n$ where $\mu_2 = \mu$ and $\mu_1 = id_E$. Let $m: l^p E \to E$ be a map defined by $m(\sum x_n) = \sum \mu_n(x_n)$, $x_n \in E^{\otimes n}$, then *m* is a continuous linear map with $\|m\| \leq 1$. We also define a continuous linear map $m_s: l_s^p E \to E$ by $m_s = m \mid l_s^p E$.

Let *E* and *F* be Banach spaces and $f_i: E \to F(i=1, \dots, n)$ be continuous linear maps, then a continuous linear map $f_1 \otimes \cdots \otimes f_n: E^{\otimes n} \to F^{\otimes n}$ is defined by $(f_1 \otimes \cdots \otimes f_n) (\sum x_1^{(i)} \otimes \cdots \otimes x_n^{(i)}) = \sum f_1(x_1^{(i)}) \otimes \cdots \otimes f_n(x_n^{(i)})$. In fact we have $||f_1 \otimes \cdots \otimes f_n|| \leq ||f_1|| \cdots ||f_n||$. If $f: E \to F$ is a linear map with $||f|| \leq 1$, we can define a linear map $l^p f: l^p E \to l^p F$ by $(l^p f)$ $(\sum x_n) = \sum f^{\otimes n}(x_n), x_n \in E^{\otimes n}$, where $f^{\otimes n} = f \otimes \cdots \otimes f$ (*n* copies). Then we have $||l^p f|| = ||f||$, and hence $l^p f$ is continuous. It is easily seen that $(l^p f)(l_i^s E) \subset l_i^s F$, and $l^p (g \circ f) = l^p g \circ l^p f$ for linear maps $f: E \to F$ and $g: F \to G$ of Banach spaces with $||f|| \leq 1$ and $||g|| \leq 1$.

Let U(E) be the group of linear isometries of E, and $l^p U(E) = \{l^p f | f \in U(E)\}$. Then we have

Proposition 2. $l^{p}U(E)$ is a closed subgroup of the group $U(l_{s}^{p}E)$ of linear isometries of $l_{s}^{p}E$.

Let $f: E \to F$ be a (not necessarily linear) map of Banach spaces. Then f is differentiable at $x_0 \in E$ if there is a continuous linear map $df(x_0): E \to F$ such that $\lim_{v \to 0} (||f(x_0+v)-f(x_0)-df(x_0)(v)||_F)/||v||_E = 0$. The k^{th} derivative $d^k f: E \to L_s^k(E, F)$ ($=L(E_s^{\otimes k}, F)$) is defined inductively by $d^k f = d(d^{k-1}f)$, and f is of class C^k if $d^k f$ is continuous. It is easily verified that $d^k(f_1 \otimes \cdots \otimes f_n) = \Sigma d^{k_1} f_1 \otimes \cdots \otimes d^{k_n} f_n$, where the sum ranges over all n-tuples (k_1, \cdots, k_n) of non-negative integers with $k_1 + \cdots + k_n$ = k. If dim $E = m < \infty$, the partial derivatives $D_i f: E \to L(E, R)$ $(i=1, \cdots, m)$ is similarly defined and we have $D^{\alpha}(f_1 \otimes \cdots \otimes f_n)$ $= \sum D^{\alpha_1} f_1 \otimes \cdots \otimes D^{\alpha_n} f_n$, where the sum ranges over all n-tuples of multiindices $(\alpha_1, \cdots, \alpha_n)$ with $\alpha_1 + \cdots + \alpha_n = \alpha$.

2. Let *E* be a Banach space. We define a map $e: E \to l_s^p E$, for any $p \ge 1$, by $e(x) = \sum \frac{1}{n!} x^{\otimes n}$, $x \in E$. Then easily we have

Theorem 1. The map $e: E \rightarrow l_s^p E$ is of class C^{∞} .

A map $f: E \to F$ of Banach spaces is called a *polynomial map* if there is a continuous linear map $\varphi: l_s^p E \to F$, for some $p \ge 1$, such that $f = \varphi \circ e$. By definition, a polynomial map is of class C^{∞} .

Let P(E, F) be the vector space of polynomial maps from E to F.

Theorem 2. If E admits a basis, then the map $e^*: L(l_s^p E, F) \rightarrow P(E, F)$ defined by $e^*(\varphi) = \varphi \circ e$, for $\varphi \in L(l_s^p E, F)$, is an isomorphism for any $p, 1 \leq p < \infty$.

Lemma.
$$\sum_{\sigma \in S_n} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)} = \sum_{k=1}^{n-1} (-1)^k (\sum_{\sigma'} (x_{\sigma'(1)} + \cdots + x_{\sigma'(n-k)})^{\otimes n}),$$

for $x_1, \dots, x_n \in E$, where S_n is the nth symmetric group and σ' ranges over all combinations of (n-k) elements of the set $\{1, \dots, n\}$.

This Lemma is easily checked by a simple calculation.

Proof of Theorem 2. By definition, e^* is a homomorphism onto P(E, F). Let $\{u_1, \dots, u_n, \dots\}$ be a basis for E, then $\{u_{i_1,\dots,i_n} = \sum_{\sigma \in S_n} u_{i\sigma(1)} \\ \otimes \dots \otimes u_{i\sigma(n)} | i_1 \leq i_2 \leq \dots \leq i_n\}$ forms a basis for $E_s^{\otimes n}$. Let $\varphi \in L(l_s^p E, F)$ be a map such that $\varphi(e(x)) = 0$ for any $x \in E$. Then for each base u_i of E and for any real $\lambda \neq 0$, we have $0 = \varphi(e(\lambda u_i)) = \sum \frac{\lambda^n}{n!} \varphi(u_i^{\otimes n})$ so that $\frac{1}{\lambda} \varphi(e(\lambda u_i)) = \varphi(u_i) + \lambda \Phi(u_i) = 0$, hence $\varphi(u_i) = \lim_{\lambda \to 0} (-\lambda \Phi(u_i)) = 0$. Inductively, we assume that $\varphi(u_{i_1,\dots,i_k}) = 0$ for any u_{i_1,\dots,i_k} with k < n. Then, by the above Lemma, for any $u_{i_1,\dots,i_n} \in E_s^{\otimes n}$ and for any real $\lambda \neq 0$,

the above Lemma, for any
$$u_{i_1,\dots,i_n} \in E_s^{\otimes n}$$
 and for any real $\lambda \neq 0$,
$$0 = n ! \varphi(e(\lambda \sum_{i=1}^{n-1} (-1)^k (\sum u_{i_{\sigma'(1)}} + \dots + u_{i_{\sigma'(n-k)}}))$$

$$=\lambda^{n}\varphi(u_{i_{1},\ldots,i_{n}})+\lambda^{n+1}\varphi(u_{i_{1},\ldots,i_{n}}),$$

hence $\varphi(u_{i_1,\dots,i_n}) = \lim_{\lambda \to 0} (-\lambda \Phi(u_{i_1,\dots,i_n})) = 0$. This implies that $\varphi = 0$ so that e^* is an isomorphism. q.e.d.

Remark. The assumption that E admits a basis can be removed.

We shall define a topology on P(E, F) such that e^* is a homeomorphism, and call it the l^p -topology of P(E, F).

We can imbed $E_n^s = \bigoplus_{k=1}^n E_s^{\otimes k}$ in $l_s^p E$ for each $1 \leq p < \infty$, and then let \hat{E}_n^s be the supplementary subspace in $l_s^p E$. A polynomial map $f = \varphi \circ e : E \to F$ is said to be of *degree* n if $\varphi(x) = 0$ for $x \in \hat{E}_n^s$. The vector space $P_n(E, F)$ of polynomial maps of degree n from E to F is a subspace of P(E, F). We have $P_n(E, F) \subset P_m(E, F)$ if $n \leq m$ and $P_1(E, F)$ is canonically isomorphic to L(E, F). For three Banach spaces E, F and G, we have

Proposition 3. $P_m(F,G) \circ P_n(E,F) \subset P_{mn}(E,G)$ and $L(F,G) \circ P(E,F) \subset P(E,G)$.

It does not hold that $P(F, G) \circ L(E, F) \subset P(E, G)$, but if $f: E \to F$ is a linear map with $||f|| \leq 1$ then we have $P(F, G) \circ f \subset P(E, G)$.

3. In this section we shall freely use the methods and results of Palais [3; Chap. IV, VIII, XI].

Let M be a (finite dimensional) compact C^{∞} manifold without boundary and with a fixed strictly positive smooth measure. For a (finite dimensional) hermitian vector bundle $\hat{\xi}$ over M, we define a Hilbert vector bundle $l_s^2\hat{\xi}$ over M by $l_s^2\hat{\xi} = \bigcup_{x \in M} l_s^2\hat{\xi}_x$ with the group $l^2U(\hat{\xi})$ where $U(\hat{\xi})$ is the group of unitary transformations of $\hat{\xi}$. Thus the structure of $l_s^2\hat{\xi}$ depends on the hermitian structure of $\hat{\xi}$. The map $e_x: \hat{\xi}_x \rightarrow l_s^2\hat{\xi}_x, x \in M$, induces a C^{∞} bundle map $e: \hat{\xi} \rightarrow l_s^2\hat{\xi}$. A bundle map $f: \xi \to \eta$ is a polynomial map if there is a bundle homomorphism $\varphi: l_s^2 \xi \to \eta$ such that $f = \varphi \circ e$. Let Pol (ξ, η) be the vector space of polynomial maps from ξ to η , then by Theorem 2 we have an isomorphism $e^*: \text{Hom}(l_s^2 \xi, \eta) \to \text{Pol}(\xi, \eta)$.

Let $C^{\infty}(\hat{\xi})$ be the vector space of (global) C^{∞} sections of the bundle $\hat{\xi}$. For two hermitian vector bundles $\hat{\xi}$ and η over M, $L(\hat{\xi}, \eta)$ is the vector bundle of linear maps $\hat{\xi}_x \rightarrow \eta_x$, for each $x \in M$, such that $C^{\infty}L(\hat{\xi}, \eta) = \text{Hom}(\hat{\xi}, \eta)$. Similarly $P(\hat{\xi}, \eta)$ is defined to be the vector bundle such that $C^{\infty}P(\hat{\xi}, \eta) = \text{Pol}(\hat{\xi}, \eta)$. We have again a bundle isomorphism $e^*: L(l_s^2\hat{\xi}, \eta) \rightarrow P(\hat{\xi}, \eta)$.

A map $f: C^{\infty}(\xi) \to C^{\infty}(\eta)$ is said to be *polynomial* (in narrow sense) if there is a linear map $\varphi: C^{\infty}(l_s^2\xi) \to C^{\infty}(\eta)$ such that $f = \varphi \circ \bar{e}$ where $\bar{e}: C^{\infty}(\xi) \to C^{\infty}(l_s^2\xi)$ is the map induced by $e: \xi \to l_s^2\xi$.

Let $A(\xi, \eta)$ be a vector space of linear operators from $\hat{\xi}$ to η , that is, an element of $A(\xi, \eta)$ is a linear map $T: C^{\infty}(\hat{\xi}) \rightarrow C^{\infty}(\eta)$, then we define a vector space $PA(\xi, \eta)$ of polynomial operators from $\hat{\xi}$ to η by $PA(\xi, \eta) = \{T: C^{\infty}(\xi) \rightarrow C^{\infty}(\eta) | T = \mathcal{T} \circ \tilde{e}$ for some $\mathcal{T} \in A(l_s^2 \hat{\xi}, \eta)\}$. In this case the map $\tilde{e}^*: A(l_s^2 \hat{\xi}, \eta) \rightarrow PA(\hat{\xi}, \eta)$ is only an epimorphism in general.

Let $T^*(M)$ be the cotangent bundle of M and T'(M) be the bundle $T^*(M)$ with the zero section removed. Let $\pi: T'(M) \to M$ be the projection and ξ be a vector bundle over M, then $\pi^*(\xi)$ is a vector bundle over T'(M) and $\operatorname{Pol}(\pi^*\xi, \pi^*\eta)$ consists of functions σ on T'(M) such that $\sigma(v, x)$ is a polynomial map of ξ_x into η_x . We define a vector space $\operatorname{PSmbl}_k(\xi, \eta)$ by $\operatorname{PSmbl}_k(\xi, \eta) = \{\sigma \in \operatorname{Pol}(\pi^*\xi, \pi^*\eta) | \sigma(\rho v, x) = \rho^k \sigma(v, x) \text{ if } \rho > 0\}$. Again we have an isomorphism $e^*: \operatorname{Smbl}_k(l_s^2\xi, \eta) \to \operatorname{PSmbl}_k(\xi, \eta)$.

In [3], several vector spaces of linear operators are defined for hermitian vector bundles over M. These are $OP_k(\xi, \eta)$, $Int_k(\xi, \eta)$ and $Diff_k(\xi, \eta)$ etc. For precise definitions and properties of these spaces we refer to [3]. From these we can define corresponding spaces of polynomial operators, that is, $POP_k(\xi, \eta)$, $PInt_k(\xi, \eta)$ and $PDiff_k(\xi, \eta)$ etc.

In [3; Chap. XI], it is proved that the sequence $0 \rightarrow OP_{k-1}(\xi, \eta) \rightarrow Int_k(\xi, \eta) \xrightarrow{\sigma_k} Smbl_k(\xi, \eta) \rightarrow 0$ is exact for any hermitian vector bundles ξ, η over M where $\sigma_k: Int_k(\xi, \eta) \rightarrow Smbl_k(\xi, \eta)$ is the symbol map. Although \tilde{e}^* are only epimorphisms we have

Proposition 4. The sequence $0 \rightarrow \text{POP}_{k-1}(\xi, \eta) \rightarrow \text{PInt}_k(\xi, \eta)$ $\stackrel{\delta_k}{\longrightarrow} \text{PSmbl}_k(\xi, \eta) \rightarrow 0$ is exact for any hermitian vector bundles ξ, η over M.

Since $\text{Smbl}_k(\hat{\xi}, \eta) \subset \text{P} \text{Smbl}_k(\hat{\xi}, \eta)$, we call a polynomial operator $T \in \text{PInt}_k(\hat{\xi}, \eta)$ semilinear if $\tilde{\sigma}_k(T)$ is contained in $\text{Smbl}_k(\hat{\xi}, \eta)$.

No. 4]

A semilinear polynomial operator $T \in \operatorname{PInt}_k(\xi, \eta)$ is called k^{th} order elliptic if $\tilde{\sigma}_k(T)(v, x)$ maps ξ_x isomorphically onto η_x for all $(v, x) \in T'(M)$. It is proved in [3] that if a linear operator $S \in \operatorname{Int}_k(\xi, \eta)$ is k^{th} order elliptic then there exists $S' \in \operatorname{Int}_{-k}(\eta, \xi)$ which is $-k^{\operatorname{th}}$ order elliptic such that $\sigma_{-k}(S') = \sigma_k(S)^{-1}$, $S'S - I_{\xi} \in \operatorname{OP}_{-1}(\xi, \xi)$ and $SS' - I_{\chi} \in \operatorname{OP}_{-1}(\eta, \eta)$. Similarly we have

Proposition 5. If a semilinear polynomial operator $T \in P \operatorname{Int}_k(\xi, \eta)$ is k^{th} order elliptic then there is a linear operator $T' \in \operatorname{Int}_{-k}(\eta, \xi)$ which is $-k^{\operatorname{th}}$ order elliptic such that $\sigma_k(T') = \tilde{\sigma}_k(T)^{-1}$ and $T'T - I_{\xi} \in \operatorname{POP}_{-1}(\xi, \xi)$.

Now, analogously to Theorem 5 of [3; Chap. XI], we give a proof to the (well-known) theorem of regularity of a solution of semilinear elliptic polynomial equation.

Theorem 3. Let T be a semilinear elliptic polynomial operator in P Int_k($\hat{\xi}, \eta$). If $f \in H^{-\infty}(\hat{\xi})$ and $\bar{T}f \in H^{r}(\eta)$ then $f \in H^{r+k}(\hat{\xi})$, where $H^{k}(\hat{\xi})$ is the Sobolev spaces on $C^{\infty}(\hat{\xi})$ and $\bar{T}: H^{-\infty}(\hat{\xi}) \to H^{-\infty}(\eta)$ is the extension of T. (For a precise definition, see [3])

Proof. Since $H^{-\infty}(\hat{\xi}) = \bigcup H^m(\hat{\xi})$, $f \in H^m(\hat{\xi})$ for some m. By induction, it suffices to prove that if m < r+k then $f \in H^{m+1}(\hat{\xi})$. By the above Proposition, there is a linear operator $T' \in \operatorname{Int}_{-k}(\eta, \hat{\xi})$ which is $-k^{\operatorname{th}}$ order elliptic such that $T'T - I_{\xi} \in \operatorname{POP}_{-1}(\hat{\xi}, \hat{\xi})$, so that $(\bar{T}'\bar{T}f - f) \in H^{m+1}(\hat{\xi})$. On the other hand, since $\bar{T}f \in H^r(\eta)$, $\bar{T}'\bar{T}f \in H^{r+k}(\hat{\xi}) \subset H^{m+1}(\hat{\xi})$. Hence we have $f \in H^{m+1}(\hat{\xi})$. q.e.d.

References

- A. Grothendieck: La theorie de Fredholm. Bull. Soc. Math. France, 84, 319-384 (1956).
- [2] L. Nachbin: Topology on Spaces of Holomorphic Mappings. Springer-Verlag (1969).
- [3] R. Palais: Seminar on the Atiyah-Singer Index Theorem. Ann. of Math. Studies, 57 (1965). Princeton.
- [4] I. E. Segal: Tensor algebras over Hilbert spaces. I. Trans. Amer. Math. Soc., 81, 106-134 (1956).
- [5] F. Treves: Topological Vector Spaces, Distributions and Kernels. Academic Press (1967).