75. ${ }^{p}$-spaces over Banach Spaces and an Application*

By Noboru Yamamoto
College of General Education, Osaka University
(Comm. by Kenjiro Shoda, M. J. A., April 13, 1970)

1. Polynomial maps (more generally, analytic maps) of Banach spaces have been studied by several authors [1], [2]. In this note we shall study a polynomial map by factoring into a composition of a linear map and a map looks like the exponential map. For this purpose we shall define a new Banach space $l_{s}^{p} E$ over a Banach space E. This treatment of polynomial maps enable us to reduce some problems on polynomial maps to the well known facts on linear maps. As a simple example we shall give a proof of the regularity theorem for a solution of semi-linear polynomial elliptic differential equation.

Let E be a real or complex Banach space with norm \|\|. We shall denote by $E^{\otimes n}$ the completion of the $n^{\text {th }}$ tensor power of E with respect to the projective topology. The norm $\left\|\|_{n}\right.$ of x in $E^{\otimes n}$ is defined by $\|x\|_{n}=\inf \left\{\Sigma\left\|x_{1}^{(i)}\right\| \cdots\left\|x_{n}^{(i)}\right\| \mid x=\sum x_{1}^{(i)} \otimes \cdots \otimes x_{n}^{(i)}\right\}$.

Let $l^{p} E(1 \leqq p<\infty)$ be the completion of the (algebraic) vector space
 $x_{n} \in E^{\otimes n}$. Thus an element x of $l^{p} E$ can be written as an infinite sum $x=\sum x_{n}$ of elements $x_{n} \in E^{\otimes n}$. It is clear that $l^{p} E$ is a Banach space. As usual, we have $l^{p} E \subset l^{q} E$ if $p \leqslant q$ and the inclusion is continuous. Note that if $E=\boldsymbol{R}$ or $\boldsymbol{C}, l^{p} E$ is canonically isomorphic to the ordinary l^{p}-space. If E is a separable Hilbert space, we can define an inner product in $l^{2} E$ which then is again a Hilbert space.

Let $E_{s}^{\otimes n}$ be the subspace of symmetric elements of $E^{\otimes n}$, the Banach subspace $l_{s}^{p} E$ of $l^{p} E$ is defined to be the completion of $\oplus_{n=1}^{\infty} E_{s}^{\otimes n}$ with the l^{p}-norm.

For two Banach spaces E and F, the following proposition is easily proved.

Proposition 1. (1) $l^{p}(E \oplus F) \subset l^{p} E \oplus l^{p} F, l_{s}^{p}(E \oplus F) \subset l_{s}^{p} E \oplus l_{s}^{p} F$. $l^{p}(E \otimes F) \cong l^{p} E \otimes l^{p} F, l_{s}^{p}(E \otimes F) \cong l_{s}^{p} E \otimes l_{s}^{p} F$. (3) If E is finite dimensional and $p>1,\left(l^{p} E\right)^{\prime} \cong l^{q} E^{\prime}$ and $\left(l_{s}^{p} E\right)^{\prime} \cong l_{s}^{q} E^{\prime}$, where E^{\prime} is the dual space of E and $\frac{1}{p}+\frac{1}{q}=1$.

A Banach space E is a Banach algebra if there is a continuous

[^0]linear map $\mu: E \otimes E \rightarrow E$ such that $\|\mu\| \leqq 1$ and $\mu\left(\mu \otimes i d_{E}\right)=\mu\left(i d_{E} \otimes \mu\right)$. Then we can define a linear map $\mu_{n}: E^{\otimes n} \rightarrow E$, for $n \geqq 3$, such that $\left\|\mu_{n}\right\| \leqq 1$ and $\mu\left(\mu_{n-i+1} \otimes \mu_{i}\right)=\mu\left(\mu_{n} \otimes i d_{E}\right)$ for $1 \leqq i \leqq n$ where $\mu_{2}=\mu$ and $\mu_{1}=i d_{E}$. Let $m: l^{p} E \rightarrow E$ be a map defined by $m\left(\sum x_{n}\right)=\sum \mu_{n}\left(x_{n}\right)$, $x_{n} \in E^{\otimes n}$, then m is a continuous linear map with $\|m\| \leqq 1$. We also define a continuous linear map $m_{s}: l_{s}^{p} E \rightarrow E$ by $m_{s}=m \mid l_{s}^{p} E$.

Let E and F be Banach spaces and $f_{i}: E \rightarrow F(i=1, \cdots, n)$ be continuous linear maps, then a continuous linear map $f_{1} \otimes \cdots \otimes f_{n}: E^{\otimes n} \rightarrow F^{\otimes n}$ is defined by $\left(f_{1} \otimes \cdots \otimes f_{n}\right)\left(\sum x_{1}^{(i)} \otimes \cdots \otimes x_{n}^{(i)}\right)=\sum f_{1}\left(x_{1}^{(i)}\right) \otimes \cdots \otimes f_{n}\left(x_{n}^{(i)}\right)$. In fact we have $\left\|f_{1} \otimes \cdots \otimes f_{n}\right\| \leqq\left\|f_{1}\right\| \cdots\left\|f_{n}\right\|$. If $f: E \rightarrow F$ is a linear map with $\|f\| \leqq 1$, we can define a linear map $l^{p} f: l^{p} E \rightarrow l^{p} F$ by ($l^{p} f$) $\left(\sum x_{n}\right)=\sum f^{\otimes n}\left(x_{n}\right), x_{n} \in E^{\otimes n}$, where $f^{\otimes n}=f \otimes \cdots \otimes f$ (n copies). Then we have $\left\|l^{p} f\right\|=\|f\|$, and hence $l^{p} f$ is continuous. It is easily seen that $\left(l^{p} f\right)\left(l_{s}^{p} E\right) \subset l_{s}^{p} F$, and $l^{p}(g \circ f)=l^{p} g \circ l^{p} f$ for linear maps $f: E \rightarrow F$ and $g: F$ $\rightarrow G$ of Banach spaces with $\|f\| \leqq 1$ and $\|g\| \leqq 1$.

Let $U(E)$ be the group of linear isometries of E, and $l^{p} U(E)$ $=\left\{l^{p} f \mid f \in U(E)\right\}$. Then we have

Proposition 2. $l^{p} U(E)$ is a closed subgroup of the group $U\left(l_{s}^{p} E\right)$ of linear isometries of $l_{s}^{p} E$.

Let $f: E \rightarrow F$ be a (not necessarily linear) map of Banach spaces. Then f is differentiable at $x_{0} \in E$ if there is a continuous linear map $d f\left(x_{0}\right): E \rightarrow F$ such that $\lim _{v \rightarrow 0}\left(\left\|f\left(x_{0}+v\right)-f\left(x_{0}\right)-d f\left(x_{0}\right)(v)\right\|_{F}\right) /\|v\|_{E}=0$. The $k^{\text {th }}$ derivative $d^{k} f: E \rightarrow L_{s}^{k}(E, F)\left(=L\left(E_{s}^{\otimes k}, F\right)\right)$ is defined inductively by $d^{k} f=d\left(d^{k-1} f\right)$, and f is of class C^{k} if $d^{k} f$ is continuous. It is easily verified that $d^{k}\left(f_{1} \otimes \cdots \otimes f_{n}\right)=\Sigma d^{k_{1}} f_{1} \otimes \cdots \otimes d^{k_{n}} f_{n}$, where the sum ranges over all n-tuples $\left(k_{1}, \cdots, k_{n}\right)$ of non-negative integers with $k_{1}+\cdots+k_{n}$ $=k$. If $\operatorname{dim} E=m<\infty$, the partial derivatives $D_{i} f: E \rightarrow L(E, R)$ $(i=1, \cdots, m)$ is similarly defined and we have $D^{\alpha}\left(f_{1} \otimes \cdots \otimes f_{n}\right)$ $=\sum D^{\alpha_{1}} f_{1} \otimes \cdots \otimes D^{\alpha_{n}} f_{n}$, where the sum ranges over all n-tuples of multiindices $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ with $\alpha_{1}+\cdots+\alpha_{n}=\alpha$.
2. Let E be a Banach space. We define a map $e: E \rightarrow l_{s}^{p} E$, for any $p \geqq 1$, by $e(x)=\sum \frac{1}{n!} x^{\otimes n}, x \in E$. Then easily we have

Theorem 1. The mape: $E \rightarrow l_{s}^{p} E$ is of class C^{∞}.
A map $f: E \rightarrow F$ of Banach spaces is called a polynomial map if there is a continuous linear map $\varphi: l_{s}^{p} E \rightarrow F$, for some $p \geqq 1$, such that $f=\varphi \circ e$. By definition, a polynomial map is of class C^{∞}.

Let $P(E, F)$ be the vector space of polynomial maps from E to F.
Theorem 2. If E admits a basis, then the map $e^{*}: L\left(l_{s}^{p} E, F\right)$ $\rightarrow P(E, F)$ defined by $e^{*}(\varphi)=\varphi \circ e$, for $\varphi \in L\left(l_{s}^{p} E, F\right)$, is an isomorphism for any $p, 1 \leqq p<\infty$.

Lemma. $\sum_{\sigma \in S_{n}} x_{\sigma(1)} \otimes \cdots \otimes x_{\sigma(n)}=\sum_{k=1}^{n-1}(-1)^{k}\left(\sum_{\sigma^{\prime}}\left(x_{\sigma^{\prime}(1)}+\cdots+x_{\sigma^{\prime}(n-k)}\right)^{\otimes n}\right)$,
for $x_{1}, \cdots, x_{n} \in E$, where S_{n} is the $n^{\text {th }}$ symmetric group and σ^{\prime} ranges over all combinations of $(n-k)$ elements of the set $\{1, \cdots, n\}$.

This Lemma is easily checked by a simple calculation.
Proof of Theorem 2. By definition, e^{*} is a homomorphism onto $P(E, F)$. Let $\left\{u_{1}, \cdots, u_{n}, \cdots\right\}$ be a basis for E, then $\left\{u_{i_{1}, \cdots, i_{n}}=\sum_{\sigma \in S_{n}} u_{i \sigma(1)}\right.$ $\left.\otimes \cdots \otimes u_{i \sigma(n)} \mid i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{n}\right\}$ forms a basis for $E_{s}^{\otimes n}$. Let $\varphi \in L\left(l_{s}^{p} E, F\right)$ be a map such that $\varphi(e(x))=0$ for any $x \in E$. Then for each base u_{i} of E and for any real $\lambda \neq 0$, we have $0=\varphi\left(e\left(\lambda u_{i}\right)\right)=\sum \frac{\lambda^{n}}{n!} \varphi\left(u_{i}^{\otimes n}\right)$ so that $\frac{1}{\lambda} \varphi\left(e\left(\lambda u_{i}\right)\right)=\varphi\left(u_{i}\right)+\lambda \Phi\left(u_{i}\right)=0$, hence $\varphi\left(u_{i}\right)=\lim _{i \rightarrow 0}\left(-\lambda \Phi\left(u_{i}\right)\right)=0$. Inductively, we assume that $\varphi\left(u_{i_{1}, \cdots, i_{k}}\right)=0$ for any $u_{i_{1}, \cdots, i_{k}}$ with $k<n$. Then, by the above Lemma, for any $u_{i_{1}, \cdots, i_{n}} \in E_{s}^{\otimes n}$ and for any real $\lambda \neq 0$,

$$
\begin{aligned}
0 & =n!\varphi\left(e\left(\lambda \sum_{k=1}^{n-1}(-1)^{k}\left(\sum_{\sigma^{\prime}} u_{i \sigma^{\prime}(1)}+\cdots+u_{i \sigma^{\prime}(n-k)}\right)\right)\right. \\
& =\lambda^{n} \varphi\left(u_{i_{1}, \cdots, i_{n}}\right)+\lambda^{n+1} \Phi\left(u_{i_{1}, \cdots, i_{n}}\right),
\end{aligned}
$$

hence $\varphi\left(u_{i_{1}, \cdots, i_{n}}\right)=\lim _{\lambda \rightarrow 0}\left(-\lambda \Phi\left(u_{i_{1}, \cdots, i_{n}}\right)\right)=0$. This implies that $\varphi=0$ so that e^{*} is an isomorphism.
q.e.d.

Remark. The assumption that E admits a basis can be removed.
We shall define a topology on $P(E, F)$ such that e^{*} is a homeomorphism, and call it the l^{p}-topology of $P(E, F)$.

We can imbed $E_{n}^{s}=\bigoplus_{k=1}^{n} E_{s}^{\otimes k}$ in $l_{s}^{p} E$ for each $1 \leqq p<\infty$, and then let \hat{E}_{n}^{s} be the supplementary subspace in $l_{s}^{p} E$. A polynomial map f $=\varphi \circ e: E \rightarrow F$ is said to be of degree n if $\varphi(x)=0$ for $x \in \hat{E}_{n}^{s}$. The vector space $P_{n}(E, F)$ of polynomial maps of degree n from E to F is a subspace of $P(E, F)$. We have $P_{n}(E, F) \subset P_{m}(E, F)$ if $n \leqq m$ and $P_{1}(E, F)$ is canonically isomorphic to $L(E, F)$. For three Banach spaces E, F and G, we have

Proposition 3. $P_{m}(F, G) \circ P_{n}(E, F) \subset P_{m n}(E, G)$ and $L(F, G) \circ P(E, F)$ $\subset P(E, G)$.

It does not hold that $P(F, G) \circ L(E, F) \subset P(E, G)$, but if $f: E \rightarrow F$ is a linear map with $\|f\| \leqq 1$ then we have $P(F, G) \circ f \subset P(E, G)$.
3. In this section we shall freely use the methods and results of Palais [3; Chap. IV, VIII, XI].

Let M be a (finite dimensional) compact C^{∞} manifold without boundary and with a fixed strictly positive smooth measure. For a (finite dimensional) hermitian vector bundle ξ over M, we define a Hilbert vector bundle $l_{s}^{2} \xi$ over M by $l_{s}^{2} \xi=\bigcup_{x \in M} l_{s}^{2} \xi_{x}$ with the group $l^{2} U(\xi)$ where $U(\xi)$ is the group of unitary transformations of ξ. Thus the structure of $l_{s}^{2} \xi$ depends on the hermitian structure of ξ. The map $e_{x}: \xi_{x} \rightarrow l_{s}^{2} \xi_{x}, x \in M$, induces a C^{∞} bundle map $e: \xi \rightarrow l_{s}^{2} \xi$.

A bundle map $f: \xi \rightarrow \eta$ is a polynomial map if there is a bundle homomorphism $\varphi: l_{s}^{2} \xi \rightarrow \eta$ such that $f=\varphi \circ e$. Let $\operatorname{Pol}(\xi, \eta)$ be the vector space of polynomial maps from ξ to η, then by Theorem 2 we have an isomorphism $e^{*}: \operatorname{Hom}\left(l_{s}^{2} \xi, \eta\right) \rightarrow \operatorname{Pol}(\xi, \eta)$.

Let $C^{\infty}(\xi)$ be the vector space of (global) C^{∞} sections of the bundle ξ. For two hermitian vector bundles ξ and η over $M, L(\xi, \eta)$ is the vector bundle of linear maps $\xi_{x} \rightarrow \eta_{x}$, for each $x \in M$, such that $C^{\infty} L(\xi, \eta)=\operatorname{Hom}(\xi, \eta)$. Similarly $P(\xi, \eta)$ is defined to be the vector bundle such that $C^{\infty} P(\xi, \eta)=\operatorname{Pol}(\xi, \eta)$. We have again a bundle isomorphism $e^{*}: L\left(l_{s}^{2} \xi, \eta\right) \rightarrow P(\xi, \eta)$.

A map $f: C^{\infty}(\xi) \rightarrow C^{\infty}(\eta)$ is said to be polynomial (in narrow sense) if there is a linear map $\varphi: C^{\infty}\left(l_{s}^{2} \xi\right) \rightarrow C^{\infty}(\eta)$ such that $f=\varphi \circ \bar{e}$ where $\bar{e}: C^{\infty}(\xi) \rightarrow C^{\infty}\left(l_{s}^{2} \xi\right)$ is the map induced by $e: \xi \rightarrow l_{s}^{2} \xi$.

Let $A(\xi, \eta)$ be a vector space of linear operators from ξ to η, that is, an element of $A(\xi, \eta)$ is a linear map $T: C^{\infty}(\xi) \rightarrow C^{\infty}(\eta)$, then we define a vector space $P A(\xi, \eta)$ of polynomial operators from ξ to η by $P A(\xi, \eta)=\left\{T: C^{\infty}(\xi) \rightarrow C^{\infty}(\eta) \mid T=\mathscr{I} \circ \bar{e}\right.$ for some $\left.\mathscr{I} \in A\left(l_{s}^{2} \xi, \eta\right)\right\}$. In this case the map $\bar{e}^{*}: A\left(l_{s}^{2} \xi, \eta\right) \rightarrow P A(\xi, \eta)$ is only an epimorphism in general.

Let $T^{*}(M)$ be the cotangent bundle of M and $T^{\prime}(M)$ be the bundle $T^{*}(M)$ with the zero section removed. Let $\pi: T^{\prime}(M) \rightarrow M$ be the projection and ξ be a vector bundle over M, then $\pi^{*}(\xi)$ is a vector bundle over $T^{\prime}(M)$ and $\operatorname{Pol}\left(\pi^{*} \xi, \pi^{*} \eta\right)$ consists of functions σ on $T^{\prime}(M)$ such that $\sigma(v, x)$ is a polynomial map of ξ_{x} into η_{x}. We define a vector space $\mathrm{P} \mathrm{Smbl}_{k}(\xi, \eta) \quad$ by $\quad \operatorname{PSmbl}_{k}(\xi, \eta)=\left\{\sigma \in \operatorname{Pol}\left(\pi^{*} \xi, \pi^{*} \eta\right) \mid \sigma(\rho v, x)\right.$ $=\rho^{k} \sigma(v, x)$ if $\left.\rho>0\right\}$. Again we have an isomorphism $e^{*}: \operatorname{Smbl}_{k}\left(l_{s}^{2} \xi, \eta\right)$ $\rightarrow \mathrm{P} \mathrm{Smbl}_{k}(\xi, \eta)$.

In [3], several vector spaces of linear operators are defined for hermitian vector bundles over M. These are $\mathrm{OP}_{k}(\xi, \eta), \operatorname{Int}_{k}(\xi, \eta)$ and $\operatorname{Diff}_{k}(\xi, \eta)$ etc. For precise definitions and properties of these spaces we refer to [3]. From these we can define corresponding spaces of polynomial operators, that is, $\mathrm{POP}_{k}(\xi, \eta), \mathrm{P} \operatorname{Int}_{k}(\xi, \eta)$ and $\mathrm{P} \operatorname{Diff}_{k}(\xi, \eta)$ etc.

In [3; Chap. XI], it is proved that the sequence $0 \rightarrow \mathrm{OP}_{k-1}(\xi, \eta)$ $\rightarrow \operatorname{Int}_{k}(\xi, \eta) \xrightarrow{\sigma_{k}} \operatorname{Smbl}_{k}(\xi, \eta) \rightarrow 0$ is exact for any hermitian vector bundles ξ, η over M where $\sigma_{k}: \operatorname{Int}_{k}(\xi, \eta) \rightarrow \operatorname{Smbl}_{k}(\xi, \eta)$ is the symbol map. Although \bar{e}^{*} are only epimorphisms we have

Proposition 4. The sequence $0 \rightarrow \mathrm{POP}_{k-1}(\xi, \eta) \rightarrow \mathrm{P}_{\operatorname{Int}}^{k}(\xi, \eta)$ $\xrightarrow{\tilde{\sigma}_{k}} \mathrm{P} \mathrm{Smbl}_{k}(\xi, \eta) \rightarrow 0$ is exact for any hermitian vector bundles ξ, η over M.

Since $\operatorname{Smbl}_{k}(\xi, \eta) \subset \mathrm{P}_{\operatorname{Smbl}_{k}}(\xi, \eta)$, we call a polynomial opera-

A semilinear polynomial operator $T \in \mathrm{P}_{\operatorname{Int}_{k}(\xi, \eta) \text { is called } k^{\text {th }} \text { order }}$ elliptic if $\widetilde{\sigma}_{k}(T)(v, x)$ maps ξ_{x} isomorphically onto η_{x} for all (v, x) $\in T^{\prime}(M)$. It is proved in [3] that if a linear operator $S \in \operatorname{Int}_{k}(\xi, \eta)$ is $k^{\text {th }}$ order elliptic then there exists $S^{\prime} \in \operatorname{Int}_{-k}(\eta, \xi)$ which is $-k^{\text {th }}$ order elliptic such that $\sigma_{-k}\left(S^{\prime}\right)=\sigma_{k}(S)^{-1}, \quad S^{\prime} S-I_{\xi} \in \mathrm{OP}_{-1}(\xi, \xi)$ and $S S^{\prime}$ $-I_{\eta} \in \mathrm{OP}_{-1}(\eta, \eta)$. Similarly we have

Proposition 5. If a semilinear polynomial operator $T \in \operatorname{P~}_{\operatorname{Int}_{k}}(\xi, \eta)$ is $k^{\text {th }}$ order elliptic then there is a linear operator $T^{\prime} \in \operatorname{Int}_{-k}(\eta, \xi)$ which is $-k^{\text {th }}$ order elliptic such that $\sigma_{k}\left(T^{\prime}\right)=\widetilde{\sigma}_{k}(T)^{-1}$ and $T^{\prime} T-I_{\xi}$ $\in \operatorname{POP}_{-1}(\xi, \xi)$.

Now, analogously to Theorem 5 of [3; Chap. XI], we give a proof to the (well-known) theorem of regularity of a solution of semilinear elliptic polynomial equation.

Theorem 3. Let T be a semilinear elliptic polynomial operator in $\operatorname{P~}_{\operatorname{Int}_{k}}(\xi, \eta)$. If $f \in H^{-\infty}(\xi)$ and $\bar{T} f \in H^{r}(\eta)$ then $f \in H^{r+k}(\xi)$, where $H^{k}(\xi)$ is the Sobolev spaces on $C^{\infty}(\xi)$ and $\bar{T}: H^{-\infty}(\xi) \rightarrow H^{-\infty}(\eta)$ is the extension of T. (For a precise definition, see [3])

Proof. Since $H^{-\infty}(\xi)=\cup H^{m}(\xi), f \in H^{m}(\xi)$ for some m. By induction, it suffices to prove that if $m<r+k$ then $f \in H^{m+1}(\xi)$. By the above Proposition, there is a linear operator $T^{\prime} \in \operatorname{Int}_{-k}(\eta, \xi)$ which is $-k^{\text {th }}$ order elliptic such that $T^{\prime} T-I_{\xi} \in \operatorname{POP}_{-1}(\xi, \xi)$, so that ($\bar{T} \bar{T} f-f$) $\in H^{m+1}(\xi)$. On the other hand, since $\bar{T} f \in H^{r}(\eta), \bar{T} \bar{T} f \in H^{r+k}(\xi)$ $\subset H^{m+1}(\xi)$. Hence we have $f \in H^{m+1}(\xi)$. q.e.d.

References

[1] A. Grothendieck: La theorie de Fredholm. Bull. Soc. Math. France, 84, 319-384 (1956).
[2] L. Nachbin: Topology on Spaces of Holomorphic Mappings. SpringerVerlag (1969).
[3] R. Palais: Seminar on the Atiyah-Singer Index Theorem. Ann. of Math. Studies, 57 (1965). Princeton.
[4] I. E. Segal: Tensor algebras over Hilbert spaces. I. Trans. Amer. Math. Soc., 81, 106-134 (1956).
[5] F. Treves: Topological Vector Spaces, Distributions and Kernels. Academic Press (1967).

[^0]: *) Dedicated to Professor Atuo Komatu on his 60th birthday.

