92. On Cubic Galois Extensions of $Q(\sqrt{-3})$

By Hideo Wada
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. a., May 12, 1970)

Let k be the field $\mathbf{Q}(\sqrt{-3})$ and let K be the field $k(\sqrt[3]{A})$ for some element A of k. In this paper, we shall determine in Theorem 1 a basis of integers of K and determine in Theorem 2 the genus field of K with respect to k and determine in Theorem 3 whether the class number of K is a multiple of 3 or not

1. A basis of integers.

Let O_{k} be the ring of integers of $k=\mathbf{Q}(\sqrt{-3})$. Any cubic galois extension K over k can be written as $k(\sqrt[3]{A})$, where $A \in O_{k}, A \neq 1$, is without cubic factors and, without loss of generality, we may assume that $A=f g^{2}, f$ and g being integers of k having no square factors and $f \not \equiv-1, g \not \equiv-1(\bmod \sqrt{-3})$. Put $A^{*}=f^{2} g, \theta=\sqrt[3]{A}, \theta^{*}=\theta^{2} / g=\sqrt[3]{A^{*}}$ and $O_{K}=$ the ring of integers of K. By the relation $\theta^{2}=g \theta^{*}$, every element of K can be expressed in the form $\alpha+\beta \theta+\gamma \theta^{*},(\alpha, \beta, \gamma \in k)$. Let $\omega=\alpha+\beta \theta+\gamma \theta^{*}$ be an element of O_{K} and $\omega^{\prime}, \omega^{\prime \prime}$ be its conjugates over k. It can be easily veryfied that:
(1) $\omega+\omega^{\prime}+\omega^{\prime \prime}=3 \alpha$,
(2) $\omega \omega^{\prime}+\omega^{\prime} \omega^{\prime \prime}+\omega^{\prime \prime} \omega=3 \alpha^{2}-3 \beta \gamma f g$,
(3) $\omega \omega^{\prime} \omega^{\prime \prime}=\alpha^{3}+\beta^{3} A+\gamma^{3} A^{*}-3 \alpha \beta \gamma f g$.

As ω is an integer, 3α and
$(3 \beta)^{3} A \cdot(3 \gamma)^{3} A^{*}=(9 \beta \gamma f g)^{3}$,
$(3 \beta)^{3} A+(3 \gamma)^{3} A^{*}=27\left(\alpha^{3}+\beta^{3} A+\gamma^{3} A^{*}-3 \alpha \beta \gamma f g\right)-(3 \alpha)^{3}+3 \cdot 3 \alpha \cdot 9 \beta \gamma f g$ are integers of k. Since A and A^{*} contain no cubic factors, 3β and 3γ are integers of k. Put $3 \alpha=a, 3 \beta=b$ and $3 \gamma=c$. Then $\omega=(a+b \theta$ $\left.+c \theta^{*}\right) / 3$, ($a, b, c \in O_{k}$). From (2) and (3), these coefficients must satisfy the congruences:
(4) $a^{2}-b c f g \equiv 0(\bmod 3)$,
(5) $a^{3}+b^{3} A+c^{3} A^{*}-3 a b c f g \equiv 0(\bmod 27)$.

We shall next determine a basis of O_{K} as O_{k}-module. When $\omega_{1}=1, \omega_{2}=\left(a_{2}+b_{2} \theta\right) / 3$ and $\omega_{3}=\left(a_{3}+b_{3} \theta+c_{3} \theta^{*}\right) / 3$ are elements of O_{K} such that:

$$
\begin{aligned}
& \min \left\{|b| ; O_{K} \ni(a+b \theta) / 3, O_{k} \ni a, b, b \neq 0\right\}=\left|b_{2}\right|, \\
& \min \left\{|c| ; O_{K} \ni\left(a+b \theta+c \theta^{*}\right) / 3, O_{k} \ni a, b, c, c \neq 0\right\}=\left|c_{3}\right|,
\end{aligned}
$$

then $\omega_{1}, \omega_{2}, \omega_{3}$ is a basis of O_{K} as O_{k}-module, since O_{k} is Euclidean.
$(a+b \theta) / 3$ is an element of O_{K} if and only if

$$
a^{2} \equiv 0(\bmod 3), \quad a^{3}+b^{3} A \equiv 0(\bmod 27)
$$

From these congruences, a and b are multiples of $\sqrt{-3}$. Put $a=\sqrt{-3} x, b=\sqrt{-3} y$. Then we have $x^{3}+y^{3} A \equiv 0(\bmod 3 \sqrt{-3})$. From this congruences, we may take $\omega_{2}=(1-\theta) / \sqrt{-3}$, when $A \equiv 1(\bmod 3 \sqrt{-3})$ and $\omega_{2}=\theta$, when $A \not \equiv 1(\bmod 3 \sqrt{-3})$.
$\omega=\left(a+b \theta+c \theta^{*}\right) / 3$ is an element of O_{K} if and only if a, b and c satisfy the congruences (4) and (5). If c is not a multiple of 3 , but c is a multiple of $\sqrt{-3}$, then from (4) and (5), a and b are also multiples of $\sqrt{-3}$. Put $a=\sqrt{-3} x, b=\sqrt{-3} y$ and $c=\sqrt{-3} z$. Then ω is $\left(x+y \theta+z \theta^{*}\right) / \sqrt{-3}$ and we may assume $z=1$. In this case, ω is an integer if and only if

$$
x^{3}+y^{3} A+A^{*}-3 x y f g \equiv 0(\bmod 3 \sqrt{-3})
$$

From this congruence ω is an integer if and only if $f \equiv g \equiv 1$ $(\bmod \sqrt{-3})$ and $f \equiv g(\bmod 3)$. In this case, $\left(1+\theta+\theta^{*}\right) / \sqrt{-3}$ is an integer.

If c is not a multiple of $\sqrt{-3}$ and $\omega=\left(a+b \theta+c \theta^{*}\right) / 3$ is an integer, then $\sqrt{-3} \omega$ is also an integer. From above argument we have $f \equiv g \equiv 1(\bmod \sqrt{-3}), f \equiv g(\bmod 3)$ and $\left(1+\theta+\theta^{*}\right) / \sqrt{-3}$ is an integer. So we may assume $c=1$. The congruences (4) and (5) are in this case as follows:
(6) $a^{2}-b f g \equiv 0(\bmod 3)$,
(7) $a^{3}+b^{3} A+A^{*}-3 a b f g \equiv 0(\bmod 27)$.

Since $A \equiv A^{*} \equiv 1(\bmod \sqrt{-3})$, we have $a \equiv b \equiv 1(\bmod \sqrt{-3})$. Put $a=\sqrt{-3} k+1, b=\sqrt{-3} l+1, f=\sqrt{-3} m+1$ and $g=f+3 s$. Then (8) $\quad a^{2}-b f g \equiv \sqrt{-3}(m-k-l)(\bmod 3)$.

From (6) and (8) we may assume $l=m-k$. It can be easily verified that

$$
a^{3}+b^{3} f g^{2}+f^{2} g-3 a b f g \equiv 9(1+\sqrt{-3} m) s^{2}(\bmod 27)
$$

Therefore (7) can be solved if and only if $f \equiv g(\bmod 3 \sqrt{-3})$.
Thus we have proved the following theorem.
Theorem 1. Let $k=\mathbf{Q}(\sqrt{-3}), K=k(\sqrt[3]{A})$ where A is an integer of k, cubefree and $A=f g^{2}, f \not \equiv-1(\bmod \sqrt{-3}), g \not \equiv-1(\bmod \sqrt{-3})$. Put $\theta=\sqrt[3]{A}, \theta^{*}=\theta^{2} / g$. Then a basis of integers of K as O_{k}-module where O_{k} is the ring of integers of k is given as follows:
$\left\{1, \theta, \theta^{*}\right\}$, when $f \equiv g(\bmod 3)$,
$\left\{1, \theta,\left(1+\theta+\theta^{*}\right) / \sqrt{-3}\right\}$, when $f \equiv g(\bmod 3), f \not \equiv g(\bmod 3 \sqrt{-3})$,
$\left\{1,(1-\theta) / \sqrt{-3},\left(f+\theta+\theta^{*}\right) / 3\right\}$, when $f \equiv g(\bmod 3 \sqrt{-3})$.
The ideal $(\sqrt{-3})$ is unramified in K if and only if

$$
A \equiv 1(\bmod 3 \sqrt{-3})
$$

2. The genus field.

Among abelian extensions over k, let L be the maximal unramified extension over K. It can be easily proved that the galois group $G(L / k)$ is of $(3,3, \cdots, 3)$ type (cf. [3]).

As $\varphi(3 \sqrt{-3})=18$ and there is the primitive sixth root of unity in O_{k}, any prime ideal \mathfrak{p} of k which is not $(\sqrt{-3})$, can be expressed as (p), where p is an element of O_{k} and $p \equiv 1$ or 2 or $4(\bmod 3 \sqrt{-3})$. Therefore A can be expressed as follows:

$$
A=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}} \cdot q_{n+1}^{e_{n}+1} \cdots q_{s}^{e_{s}} \cdot r
$$

where $e_{i}=1$ or $2(1 \leqq i \leqq s)$

$$
\begin{aligned}
p_{i} & \equiv 1(\bmod 3 \sqrt{-3}), \quad q_{i} \equiv 2 \text { or } 4(\bmod 3 \sqrt{-3}) \\
r & =\rho^{l}(\sqrt{-3})^{m}, \quad \rho=(1+\sqrt{-3}) / 2, \quad l, m \in Z .
\end{aligned}
$$

Then we get easily the following theorem.
Theorem 2. Let L, p_{i}, q_{i} and r be as above. Then L is expressed as follows:

$$
L=K\left(\sqrt[3]{p_{1}}, \cdots, \sqrt[3]{p_{n}}, \sqrt[3]{q_{n+1} q_{n+2}^{m_{++}}}, \cdots, \sqrt[3]{q_{n+1} q_{s}^{m_{s}}}\right)
$$

where $m_{i}=1$ or 2 such that

$$
q_{n+1} q_{i}^{m_{i}} \equiv \pm 1(\bmod 3 \sqrt{-3})
$$

Let t be the number of ramified prime ideals in K / k. Then the degree of $L=K$ is 3^{t-1}, when $n=s$, and 3^{t-2}, when $n<s$.

It is easy to see that the class number of K is not a multiple of 3 if 'and only if $L=K$. So we have next theorem.

Theorem 3. The class number of K is not a multiple of 3 if and only if A has one of the following forms (p_{i}, q_{i}, r are as above):

1) $A=p_{1}$. 2) $A=q_{1} q_{2}, q_{1} \equiv 2, q_{2} \equiv 4(\bmod 3 \sqrt{-3})$.
2) $A=q_{1} q_{2}^{2}, q_{1} \equiv q_{2} \equiv 2$ or $4(\bmod 3 \sqrt{-3})$.
3) $A=r$.
4) $A=q_{1} r$.

Remark. When A is a natural number, K contains the purely cubic field $F=\mathbf{Q}(\sqrt[3]{A})$. Prof. T. Honda determined whether the class number of F is a multiple of 3 or not (cf. [4]). He also proved that the class number of K is not a multiple of 3 if and only if the class number of F is not a multiple of 3 (cf. [4]). If we use this fact and Theorem 3, we can easily get his result.

References

[1] R. Dedekind: Über die Anzahl der Idealklassen in reinen kubischen Zahlkörpern. J. Reine Angew. Math., 121, 40-123 (1900).
[2] B. N. Delone and D. K. Faddeev: The Theory of Irrationalities of the Third Degree. Moskva (1940).
[3] H. Hasse: Zur Geschlechtertheorie in quadratischen Zahlkörpern. J. Math. Soc. Japan, 3, 45-51 (1951).
[4] H. Honda: Pure cubic fields whose class numbers are multiples of 3 (to appear in J. of Number Theory).
[5] J. Martinet et J. J. Payan: Sur les bases d'entiers des extensions galoisiennes et non abeliennes de degré 6 des rationnels. J. Reine Angew. Math., 229, 29-33 (1968).

