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121. Paracompactifications of M-spaces

By Kiiti MorIiTA
Department of Mathematics, Tokyo University of Education
and University of Pittsburgh

(Comm. by Kinjiré KUNUGI, M. J. A., June 12, 1970)

By a space we shall always mean a completely regular Hausdorff
space unless otherwise specified.

1. Let X be a space with a uniformity @ agreeing with the
topology of X ; that is, @ is a family of open coverings of X satisfying
conditions (a) to (c) below, where for coverings 1l and 8 of X we mean
by 1< that LB is a refinement of 1.

(a) If U, Becd, then there exists We @ such that U<W and
B W,

(b) If Ued, there is B e ® which is a star-refinement of 11.

(¢) {St(x,W)|Uecd}is a basis of neighborhoods at each point x
of X.

Let {@,]2¢€ 4} be the totality of those normal sequences which
consist of open coverings of X contained in @. Let ,={U,|i=1,2, ...},
where 1,; is a star-refinement of 11, , for ¢=2,3,.... Asin [1], we
denote by (X,®,) the topological space obtained from X by taking
{St (x,U,)]9=1,2, ---} as a basis of neighborhoods at each point z of
X. Let X/®, be the quotient space obtained from (X, @,) by defining
those two points z# and ¥ equivalent for which y e St («,1,,), for
i=1,2,.... Then there is a canonical map ¢,: X—X /0, which is
continuous, and X/@, is metrizable.

Now we shall define a partial order in {®,| ¢ 4}. If each member
of @, has a refinement in @,, we write 9,<®,. Then, if 9,<®,, there
exists a continuous map ¢¢: X/®,—X/®, such that ¢,=¢;-¢,, and
{X/]®,; ¢} is an inverse system of metrizable spaces. Let us set

p,,(X):lHn X/,

For any point x of X, let us put o(2)={p,(x)}. Then ¢: X— u,(X)
is a homeomorphism into.

In case every Cauchy family {C,} of X with respect to ® which has
the countable intersection property is non-vanishing (thatis, N C',;Egzﬁ),
we say that X is weakly complete with respect to @.

Theorem 1. The map ¢: X—p(X) is onto if and only if X is
weakly complete with respect to 0.

In case @ is the finest uniformity (that is, @ consists of all normal
open coverings of X), we write p(X) instead of p,(X). In this case
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we have the following theorems.

Theorem 2. p(X) is the completion of X with respect to its finest
uniformity and for any continuous map f:X—Y thereis a continuous
map p(f): p(X)—p(Y) so that p is a covariant functor from the
category of spaces to the category of topologically complete spaces.

Here a space is called topologically complete if it is complete with
respect to its finest uniformity.

Theorem 3. wu(X) s characterized as o space Y with the
following properties:

(@) Y is a topologically complete space containing X as a dense
subspace.

() Any continuous map f from X into a metric space T can be
extended to a continuous map from Y into T.

2. Now, let X be an M-space throughout this section (cf. [1]).
Then, by definition, there is a normal sequence {l1;} of open coverings
of X satisfying the condition (M):

If {K,} is a decreasing sequence of non-empty closed sets of

(M) X such that K,C St (x,1;) for each ¢ and for some point x

of X, then NK,;#¢.

Let {@,|2¢ 4} be the totality of all normal sequences of open
coverings of X and {@,|4 ¢ A’} the set of all normal sequences @, satisfy-
ing Condition (M). Then {®,|4 ¢ A’} is cofinal in {@,| 1 € 4} and we have

p(X)=lim {X/d,; L& 4.

Moreover ¢;: X/0,—X /9, is a perfect map if ,<®, and 4, ze 4. In
general, we have

Theorem 4. If {X;; ¢4} is an inverse system of spaces such that
each ¢} is a perfect map, then the projection from lim {X,; ¢4} to X, is
a perfect map for each . -

Hence we have the first part of the following theorem.

Theorem 5. Let X be an M-space. Then pu(X) is a paracompact
M-space, and moreover p(X)=p(f)(T) for any quasi-perfect map f
from X onto a metric space T, where B(f): B(X)—pB(T) is the Stone
extension of f.

Thus we may call x(X) the paracompactification of X.

Theorem 6. If f: X—Y is a quasi-perfect map, where X, Y are
M-spaces, then p(f): p(X)—u(Y) is a perfect map.

Theorem 7. Let X be an M-space. Then X admits a quasi-
perfect map from X onto a separable (resp. locally compact or
complete) metric space if and only if p(X) is Lindelof (resp. locally
compact or a G, in its Stone-Céch compactification).

Theorem 8. Let f be a quasi-perfect map from an M-space onto
an M-space Y. If X admits o quasi-perfect map from X onto a
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separable (resp. locally compact or complete) metric space, so does Y.

3. In this section we are concerned with the product formula
(X XY)=p(X)x p(Y), which, however, does not hold in general.

Theorem 9. For any space X and a locally compact, paracompact
space Y we have p(X X Y)=pu(X)x u(Y).

Theorem 10. Let XXY be an M-space. Then the following
conditions are equivalent.

(@ pXXY)=p@X)x pY).

(b) There exist quasi-perfect maps ¢: X—S8, ¥: YT with S,T
metrizable such that the product map Xy : XXY->SXT is a quasi-
perfect map.

(¢) If K and L are any countably compact closed subsets of X
and Y respectively, then K X L is countably compact.

4. As an application of Theorem 10 we have the following
theorem, where, following M. Katétov (cf. [2]), we define dim X for a
not necessarily normal space X by dim B(X) (8(X) being the Stone-
Céch compactification of X).

Theorem 11. Let X be an M-space and Y a metric space or a
locally compact paracompact space. Then dim(XxXY)<dimX+dimY.

It seems that Theorem 11 is the first result which assures the
validity of the product theorem on dimension for the case of X XY
being not necessarily normal.

The proofs of the theorems stated above and the details will be
published elsewhere.
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