No. 7] Proc. Japan Acad., 46 (1970) 647

151. Summability of Fourier Series

By Masako IzuMI and Shin-ichi 1zuMI
Department of Mathematics, The Australian National University,
Canberra, Australia

(Comm. by Kinjirdo KUNUGI, M. J. A., Sept. 12, 1970)

1. Introduction and Theorems.
1.1. Let >’ a, be an infinite series and (s,) be the sequence of its
partial sums. If

L(x)= 1 f} s,x"/n—s as z11,

—log (1—2a) n=1
then the series 3 a, is said to be (L) summable to s. We shall consider
a more general summability. Let (p,) be a sequence of nonnegative

numbers and suppose that the series p(x) = i px" converges for all z,
n=1
0<z<landp(x)] casxt1l. If
1 o
Px)=———> p,8,¢"—>s as «1t1,
p(x) anl I

then the series > a, is said to be (P) summable to s.

About (L) summability of Fourier series, M. Nanda ([1], cf. [2]
and [3]) proved the

Theorem 1. If

(1) g(t):j"go(u)u—ldu:o(log 1/t) as t]0

where @u)= f(x,+w)+ f(x,—u)—2s, then the Fourier series of f is
(L) summable to s at the point x,.

We shall generalize this theorem to (P) summability in the follow-
ing form.

Theorem 1. Suppose that the sequence (np,) is monotone (non-
decreasing or non-increasing) and concave or convex and that

p(@)/A—ax)p'(r)—oc as x11.

If

(2) j :_zG(t)t—sdt:"(p(x)/ A—2)p'(x) as z11
where G(t)= J ‘|g(u) |du, then the Fourier series of f is (P) summable

to s at the point x,.
The condition (2) is the consequence of

3)  [on/a-treasap @/a-p@ as i1

and
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(4) G(t)=j: lg) | du=o(p(L—t)/p’(L—1t) as t]0.
Further (3) is the consequence of
(5) p) /A=)’ (®) 1 as t11l, forana<2.

The function p(x)=(—log (1—x))°, b being a positive integer,
satisfies the condition of Theorem 1 concerning p(x) and also (5). Thus
(4) gives

Corollary 1. If

G(t):_[: lg(w) |du=o(tlog1l/t) as t |0,

then the Fourier series of f is (P) summable to s at the point x, where
p(x)=(—log 1—x))°, b being a positive integer.

This corollary includes Theorem I as a particular case.

1.2. If L(x) is of bounded variation on an interval (¢, 1),0<¢c<1,
then the series > a, is said to be |L| summable. Similarly, if P(x)
is of bounded variation on (c,1), then the series is said to be |P|
summable.

Following theorems are known ([4], [5])

Theorem II. If
(6) 1 e g, MO o, ),

tlog 2r/t) Jt 2sinu/2 tlog 2r/t)
then the Fourier series of f is |L| summable at the point x,.

Theorem III. Suppose that (i) the sequence (n p,) is of bounded
variation and that (ii) there is an a, 0<a <1, such that (1—x)*p(x) |
asx 11, If )/t p(A—1t) e L(O, &), then the Fourier series of f is P
summable at the point x,.

We shall prove the following

Theorem 2. Suppose that (i) (np,) and (#?p,) are monotone and
concave or convex and that (il) A —x)*p”(x)/p(x) € L0, ). If

where H(t):f|h(u)|du, then the Fourier series of f is |P| summable
0

at the point x,
The condition (7) is satisfied when

(8) I :(uzp”(l —w)/pA—u)dust’p”’(1—-8)/p(l—1t) forall t>0

and
(9) H@®p"1—1t)/p(1—1t) € L0, 1).

If p(x)=—log (1—=x), then the condition (8) is satisfied and the
condition (9) becomes (6). Hence Theorem II is a particular case of
Theorem 2. More generally, if p(x)=(—1log (1—x))? (b being a positive
integer), then (8) is satisfied and (9) reduces also to (6). Thus we get
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Corollary 2. If the condition (6) is satisfied, then Fourier series
of f is |P| summable at the point x,, where p(x)=(—log (1—x))?, b
being a positive integer.

This corollary is not contained in Theorem III, since the sequence
(np,) in Corollary 2 is not of bounded variation. Therefore Theorems
IIT and 2 are mutually exclusive.

2. Proof of Theorem 1.
We can suppose that rgo(u)du=0 and p,=p,=0. The sequence
0

(np,; n=3) is also monotone and concave or convex. Let s, be the
nth partial sum of the Fourier series of f at the point x,, then

(8, —8)= j "o(H)t" sin nt dt 4 o(1),
0
so that
nf} Pn(8, —8)x™ :.J"go(t)t‘1 (i P2 sin nt) dt+o(p(x)) as z11
n=1 0 n=1

We shall prove that the integral on the right side is o(p(x)) as = 1 1.
By integration by parts, the integral equals to

lim (g(t)i D™ Sin nt) +rg(t) (f‘; NP,L" COS nt) dt=U+V,
t—0 n=1 0 n=1

where U=0, since tg(t)—0 as {—0 and the series > np,z" converges.
Now,

> np,x™ cos nt
n=1
— RZ NP, eimt
n=1

— _g%i A(/npn)xn+lei(’n+l)t/(1___xeit)
n=1

os (m+1)t—x cos nt
(1—a)*+4x sin’t/2

=— > Ampar+ ©
n=1

_ —1
T (l—2)'+4a sin?t/2
X (i A(np,)x"** cos (n+ 1)t—x2§: A(m+1)p,, Jxr cos(n+1)t>
n=1 n=1
_ —1
A —2)*+ 4z sin’t/2

X (S 4wz costn+ D+ 2% A+ Dy e cos(n+ 1))

=1

and then
vea(a-o7[ g+ [ jgwta

.(gdzmn)xm +1-0)| 53 dnp)ar

+A) .
Since
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> dmpertt=—A—x) 3 np,a"=—z(1—2x)p (%)
and

> Amp)antt=—(1—2) 3] dnp,)x" =1 —x)p’(x),
we get

vear@ ([ gwiatra—ay||ow|ta)

=AQ-2yp@ ([ _GotHdt+ 6@ )=o)

as ¢ 11, by (2) and (1—=2)*p’(x)=0(p(x)). Thus the theorem is proved.
3. Proof of Theorem 2.
We shall take s=0 in the definition of ¢ and p,=p,=0, and sup-
pose that j"go(u)du=0. Then

P(x)= 2Sal" = : » n+1/2)t
(@)= )Zép 2 ) Tam (P SN+ /2t
By diﬁerentlatlon with respect to z,

/ J— " §0(t) n
P@=[ 500 (5 pe sina 12t @Y )

- j () (Z! (n+1/2)p, cos(n+1/2)t (x"/p(x))’) dt

and then

j: | P/(@)| dngJ: |h(D)| dtm nZ:l np, cos(n+1/2)ta [p@)y| de

cos(c+1/2)t(x™/p(x)) | dux

=Q+R.
We shall prove that @ and R are finite, which proves the theorem.
Now, the infinite sum in Q is

Z n*p, cos(n+1/2)txm ! — (@) }f} np, cos(n+1/2)tx™

p(x) =1 (p(x))* =
=T-U
where
p(x)T:gRZ”] NP L letn D — (esu Zm: A(nzpn)xneint/(l_xeic))

— ) n €08(n+3/2)t—x cos(n+1/2)t
2 Ao A—w) 1 4 sin’t2

(Z A (n*p,)x™ cos(n+3/2)t

-1
(1 %)%+ 4 sin*t/2
+A—x) Z=1 A((n+1)’py )2 cos(n+ 3/2)t)

and similarly
@@ -1 b
(%) (1—2)*+4 sin’t/2

2 Lmp ! cos(n+3/2)t

n=1
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+ (1= Y A(n+ D)y, )" cos(n+ 3/2>t) .
Since p(x) < p’(x) <p”(x) and

> Amipyat=— 1 —x)p" (x) —

_g____i)_p’ (),
X

> Lwip)et =1 —x)p” () + —(l—_;@zo’(w),

we get
Ad—2) [ p’(x) p'(x) \* AQd—x) p"(x)
< < »
SIS e | (@) +(p<x)))— Q-+ 8 p@)
on (¢,1). Now

Q=a[ 1hw)atf |S|do

=A‘[:_t|h(t)|dtqc (g) da +ij - p((”)”)d)

+Aj" lh(t)ldtj (1—ay 7"/2(”;) da

..AJA () dxj |h(t)|dt+Aj A—ap P @ p (”) da f ’ 'h(t)' dt+A

gAI(l x)zp(x) dxf H(t) dt+A

gAL ﬂgldtj —ay Q;(g) de+A<A

by (7). Similarly R is also finite and then P(x) is of bounded varia-
tion, which is to be proved.
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