149. A Space of Sequences given by Pairs of Unitary Operators

By Takashi Ito and Bert M. SCHREIBER*)
Department of Mathematics, Wayne State University
Detroit, Michigan

(Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1970)

- 1. Introduction. In a recent note [5] on affine transformations with dense orbits R. Sato makes the following statement (Lemma 1). Let H be a complex (separable) Hilbert space, and let A be a bounded operator and U_1 and U_2 unitary operators on H. Given $\xi, \eta \in H$ there is a complex, regular Borel measure μ on the two-dimensional torus T^2 whose Fourier-Stieltjes transform is given by
- (1) $\hat{\mu}(m,n) = \langle AU_1^m \xi, U_2^n \eta \rangle$, $-\infty < m, n < \infty$. The purpose of this paper is to point out some counterexamples to this proposition and to examine more carefully the class of sequences of the type appearing on the right-hand side of (1).

We refer the reader to [4] for some background and related results on affine transformations. Here let us just recall that doubly-indexed sequences of the type indicated in (1) arise in the study of affine transformations on locally compact groups as follows. Let G be a locally compact group and $\tau(x)$ a bi-continuous, Haar-measure-preserving automorphism of G. Let $a \in G$, and consider the affine transformation $T(x) = a\tau(x), x \in G$. Denote the left regular representation of G on $L^2(G)$ by V, and let U_1 and U_2 be the unitary operators on $L^2(G)$ given by composition with T(x) and $\tau(x)$, respectively.

Lemma [5].
$$U_2^{-1}VU_1 = V \circ T$$
. Thus for $f, g \in L^2(G)$ we have $\langle V \circ T^n(x) f, g \rangle = \langle V(x) U_1^n f, U_2^n g \rangle$, $-\infty < n < \infty$, $x \in G$.

The fact that a measure μ satisfying (1) need not exist for all choices of A, U_1 and U_2 is immediate from the following

Proposition. Let $(a_n)_{n=-\infty}^{\infty}$ be any bounded sequence of complex numbers. There exist a bounded operator A and a unitary operator U on the Hilbert space H and $\xi, \eta \in H$ such that

$$a_n = \langle AU^n \xi, U^n \eta \rangle, \quad -\infty < n < \infty.$$

Proof. Let H denote the bilateral sequence space $l_2(-\infty, \infty)$ with standard basis $\{\cdots, e_{-1}, e_0, e_1, \cdots\}$. Let U be the bilateral shift operator: $Ue_n = e_{n+1}, -\infty < n < \infty$, and let A be the bounded operator on H given by coordinatewise multiplication with the given sequence $(a_n)_{n=-\infty}^{\infty}$. Then

^{*)} Research supported by National Science Foundation Grant No. GP-13741.

$$\langle AU^ne_0, U^ne_0 \rangle = \langle a_ne_n, e_n \rangle = a_n \qquad -\infty < n < \infty.$$

2. Sequences given by unitary operators. Let \mathcal{S} denote the space of all sequences $(\langle AU_1^m\xi,U_1^n\eta\rangle)_{m,n=-\infty}^{\infty}$ for A a bounded operator and U_1 and U_2 unitary operators on some Hilbert space H and $\xi,\eta\in H$. The following lemma shows that the operator A may be suppressed in studying \mathcal{S} .

Lemma. Let $(\alpha_{mn})_{m,n=-\infty}^{\infty} \in \mathcal{S}$. There exist unitary operators V_1 and V_2 on a Hilbert space K and ξ' , $\eta' \in K$ such that

(2)
$$\alpha_{mn} = \langle V_1^m \xi', V_2^n \eta' \rangle, \quad -\infty < m, n < \infty.$$

Proof. Let the α_{mn} be given by operators A, U_1, U_2 as above on some Hilbert space H and $\xi, \eta \in H$, and let $c = ||A|| \neq 0$. Let W be a unitary dilation of $c^{-1}A$ on the space K containing H [3]. Set $\xi' = c\xi$, $\eta' = w^*\eta$, and $V_2 = W^*\tilde{U}_2W$, where \tilde{U}_2 is any unitary extension of U_2 to K, and let V_1 be any extension of U_1 to a unitary operator on K. Then

$$egin{aligned} lpha_{mn} = & \langle cWU_1^m \xi, U_2^n \eta
angle = & \langle cU_1^m \xi, W^*U_2^n \eta
angle \ = & \langle cU_1^m \xi, (W^*U_2^n W)(W^* \eta)
angle \ = & \langle V_1^m \xi', V_2^n \eta'
angle, \qquad -\infty < m, n < \infty. \end{aligned}$$

Theorem. S is a conjugate-closed algebra of bounded, doubly-indexed sequences containing all the sequences of Fourier-Stieltjes coefficients of complex Borel measures on the torus.

Proof. Let $(\alpha_{mn})_{m,n=-\infty}^{\infty}$, $(\beta_{mn})_{m,n=-\infty}^{\infty} \in \mathcal{S}$ be given as in (2) in terms of U_1, U_2, ξ, η and V_1, V_2, ξ', η' , on some Hilbert spaces H and K, respectively. On the Hilbert space $H \oplus KU_1 \oplus V_1$ and $U_2 \oplus V_2$ are unitary, and we have

$$egin{aligned} lpha_{mn} + eta_{mn} &= \langle U_1^m \xi, U_2^n \eta
angle_H + \langle V_1^m \xi', V_2^n \eta'
angle_K \ &= \langle (U_1^m \xi, V_1^m \xi'), (U_2^n \eta, V_2^n \eta')
angle_{H \oplus K} \ &= \langle (U_1 \oplus V_1)^m (\xi, \xi'), (U_2 \oplus V_2)^n (\eta, \eta')
angle_{H \oplus K}, \quad -\infty < m, n < \infty. \end{aligned}$$

Thus $(\alpha_{mn} + \beta_{mn})_{m,n=-\infty}^{\infty} \in \mathcal{S}$. To show \mathcal{S} is closed under multiplication consider the Hilbert-space tensor product $H \hat{\otimes} K$ [6]. Again, $U_1 \hat{\otimes} V_1$ and $U_2 \hat{\otimes} V_2$ are unitary, and

$$\begin{array}{l} \alpha_{mn}\beta_{mn} = & \langle U_1^m\xi, U_2^n\eta\rangle_H \langle V_1^m\xi', V_2^n\eta'\rangle_K \\ = & \langle U_1^m\xi\otimes V_1^m\xi', U_2^n\eta\otimes V_2^n\eta'\rangle_{H\hat{\otimes}K} \\ = & \langle (U_1\otimes V_1)^m(\xi\otimes\xi'), (U_2\otimes V_2)^n(\eta\otimes\eta')\rangle_{H\hat{\otimes}K}, \quad -\infty < m, n < \infty. \end{array}$$

Now let μ be a complex Borel measure on the torus, and let f be a function of unit modulus such that $d\mu = fd|\mu|$. On $L^2(|\mu|)$ let $U_1g = \bar{Z}_1g$ and $U_2g = Z_2g$. Then

$$\hat{\mu}(m,n) = \int \!\! ar{Z}_1^m ar{Z}_2^n d\, \mu(Z_1,Z_2) = \int \!\! ar{Z}_1^m ar{Z}_2^n f d\, |\, \mu\, | \ = \langle U_1^m f,\, U_2^n 1
angle, \qquad -\infty < m,\, n < \infty.$$

Consider the tensor algebra $V=C(T)\hat{\otimes}_{\tau}C(T)$, where γ denotes the greatest cross norm [6]. We now show that \mathcal{S} can be embedded in the dual space V^* of V. Given $(\alpha_{mn})_{m,n=-\infty}^{\infty} \in \mathcal{S}$, represented as in (2), and trigonometric polynomials

$$p(\theta) = \sum_{m=-N}^{M} a_m e^{im\theta}$$
 and $q(\theta) = \sum_{m=-N}^{N} b_m e^{in\theta}$,

set

$$F(p \otimes q) = \sum_{m=-M}^{M} \sum_{n=-N}^{N} a_m b_n \alpha_{-m,n}.$$

Then

$$|F(p \otimes q)| = |\sum_{m,n} a_m b_n \langle U_1^{-m} \xi, U_2^n \eta \rangle|$$

$$= \left| \left\langle \sum_{m=-M}^M a_m U_1^{-m} \xi, \sum_{n=-N}^N \bar{b}_n U_2^n \eta \right\rangle \right|$$

$$= |p(U_1^{-1}) \xi, q^*(U_2) \eta| \le ||p(U_1^{-1}) \xi|| ||q^*(U_2) \eta||$$

$$\le ||p|| ||q|| ||\xi|| ||\eta||.$$

(Here $q^*(\theta) = \overline{q(-\theta)}$.) Thus F can be extended uniquely to an element of V^* with norm at most $\|\xi\|\|\eta\|$. The following is now clear.

Theorem. The mapping $(\alpha_{mn})_{m,n=-\infty}^{\infty} \to F$, as in (3), is a linear embedding of S into V*. The Fourier-Stieltjes sequences are precisely those which correspond, under this embedding, to the elements of V* which are continuous in the uniform norm (least cross norm).

Remark. It would be interesting to determine whether or not every functional in V^* can be obtained in this way from S. If this were the case, then (3) and (4) would represent an analog for S of a well-known criterion which characterizes Fourier-Stieltjes sequences.

Our next theorem shows that if a sequence in S is the Fourier-Stieltjes transform of some measure on T^2 this measure can be described in terms of the spectral measures of the unitary operators involved. Before stating this result, let us examine V^* a bit more carefully. Elements of V^* will be called *bimeasures*, in accordance with [1], [2]. Briefly, for every $F \in V^*$ there is a unique function $k(\theta, \varphi)$ on T^2 (which we also call a bimeasure) which vanishes for $\theta = 0$ or $\varphi = 0$, is left continuous in each of the variables, has finite $Fr\acute{e}chet$ variation, and satisfies

$$(5) \hspace{1cm} F(f \otimes g) \! = \! \int_{T} \! f(\theta) d_{\theta} \! \int_{T} \! g(\varphi) d_{\varphi} k(\theta, \varphi), \hspace{0.5cm} f, g \in C(T).$$

The Fréchet variation $\phi(k)$ of k is defined as follows. Given partitions

$$0 = s_1 < s_2 < \dots < s_p = 2\pi$$
 and $0 = t_1 < t_2 < \dots < t_q = 2\pi$

of T we set, for $1 \le i \le p$ and $1 \le j \le q$,

$$\varDelta_{ij}k\!=\!k(s_i,t_j)\!-\!k(s_{i-1},t_j)\!-\!k(s_i,t_{j-1})\!+\!k(s_{i-1},t_{j-1}).$$

Then

$$\Phi(k) = \sup \left| \sum_{i=1}^{p} \sum_{j=1}^{q} \alpha_i \beta_j \Delta_{ij} k \right|,$$

the supremum being taken over all pairs of partitions and corresponding sequences $\alpha_1, \dots, \alpha_p$ and β_1, \dots, β_q of complex numbers of modulus at most one.

Theorem. Let U_1, U_2, ξ, η be as above on some Hilbert space,

and let E_i denote the spectral measure for U_i on $[0,2\pi)$, i=1,2. For X and Y Borel sets, let

$$\nu(X\times Y)=\langle E_1(X)\xi, E_2(Y)\eta\rangle.$$

Then there exists a measure μ on T^2 satisfying (1) (with A having been absorbed as in our first lemma) if and only if ν can be extended to a measure on T^2 .

Proof. If ν can be extended to a measure, then a computation shows that $\hat{\nu}(m,n) = \alpha_{-m,n}$. Conversely, suppose we can find a measure μ such that $\hat{\mu}(m,n) = \alpha_{-m,n}, -\infty < m, n < \infty$. It is easy to see that the bimeasure corresponding to μ is the function

$$k(\theta, \varphi) = \mu([0, \theta) \times [0, \varphi)).$$

On the other hand, let

$$h(\theta,\varphi) = \langle E_1([0,\theta))\xi, E_2([0,\varphi))\eta \rangle.$$

Then h is left continuous in both θ and φ , and given a pair of partitions as above we have

$$\Delta_{ij}h = \langle E_1([s_{i-1},s_i))\xi, E_2([t_{j-1},t_j))\eta \rangle.$$

Thus for $|\alpha_i| \leq 1$, $|\beta_i| \leq 1$,

$$\begin{split} \left| \sum_{i=1}^{p} \sum_{j=1}^{q} \alpha_{i} \beta_{j} \Delta_{ij} h \right| = & \left| \left\langle \sum_{i=1}^{p} \alpha_{i} E_{1}([s_{i-1}, s_{i})) \xi, \sum_{j=1}^{q} \overline{\beta}_{j} E_{2}([t_{j-2}, t_{j})) \eta \right\rangle \right| \\ \leq & \left\| \sum_{i=1}^{p} \alpha_{i} E_{1}([s_{i-1}, s_{i})) \xi \right\| \left\| \sum_{j=1}^{q} \overline{\beta}_{j} E_{2}([t_{j-1}, t_{j})) \eta \right\| \\ \leq & \| \xi \| \| \eta \|. \end{split}$$

Hence $\phi(h) \le ||\xi|| ||\eta||$, so h defines a bimeasure, namely

$$\begin{split} \int_{0}^{2\pi} & f(\theta) d_{\theta} \int_{0}^{2\pi} g(\varphi) d_{\varphi} h(\theta, \varphi) \\ &= \int_{0}^{2\pi} f(\theta) d_{\theta} \Big\langle E_{1}([0, \theta)) \xi, \int_{0}^{2\pi} \overline{g(\varphi)} dE_{2}(\varphi) \eta \Big\rangle \\ &= \Big\langle \int_{0}^{2\pi} f(\theta) dE_{1}(\theta) \xi, \int_{0}^{2\pi} \overline{g(\varphi)} dE_{2}(\varphi) \eta \Big\rangle, \qquad f, g \in C(T). \end{split}$$

It is clear from the Spectral Theorem that h corresponds as in the previous theorem to $\hat{\mu}$, as, of course, does k also. By the uniqueness of the representation (5), we must have h=k, which means ν can be extended to a measure on T^2 .

Remark. Note that by the uniqueness of the representation (5) the function h above depends only on the sequence in S and not on the choice of the unitary operators defining it.

Corollary. Let $(\alpha_{mn})_{m,n=-\infty}^{\infty}$ be given as in (2). Then it is a Fourier-Stieltjes sequence if and only if the following condition holds: For any pair of partitions $\{X_i\}_{i=1}^{\infty}$ and $\{Y_j\}_{j=1}^{\infty}$ of $[0,2\pi)$,

$$(6) \qquad \qquad \sum_{i,j=1}^{\infty} |\langle E_1(X_i)\xi, E_2(Y_j)\eta \rangle| < \infty.$$

Proof. If $(\alpha_{mn})_{m,n=-\infty}^{\infty}$ is a Fourier-Stieltjes sequence, then consideration of the measure $|\nu|$, whose existence is implied by our theorem, makes it clear that (6) must hold for any pair of partitions.

Conversely, note that for any Borel sets X and Y, $\nu(\cdot, Y)$ and $\nu(X, \cdot)$ are measures. Using this fact and (6) it can be shown that ν is countably additive on the algebra of finite unions of measurable rectangles.

Example. Suppose that for i=1,2 H has a basis $\{e_j^i\}_{j=1}^{\infty}$ of eigenvectors of U_i corresponding to distinct eigenvalues. Let $\xi, \eta \in H$, and write $\xi = \sum_{i=1}^{\infty} x_i e_i^1$ and $\eta = \sum_{j=1}^{\infty} y_j e_j^2$. Then $(\alpha_{mn})_{m,n=-\infty}^{\infty}$ (as in (2)) is a Fourier-Stieltjes sequence if and only if

$$\sum_{i,j=1}^{\infty} |x_i| |y_i| |\langle e_i^1, e_j^2 \rangle| < \infty$$
.

References

- [1] M. Morse: Bimeasures and their integral extensions. Annali di Math. Pura ed Appl., 39 (4), 345-356 (1955).
- [2] M. Morse and W. Transue: Functionals of bounded Fréchet variation. Canad. J. Math., 1, 153-165 (1949).
- [3] B. Sz.-Nagy and C. Foias: Analyse Harmonique des Opérateurs de L'espace de Hilbert. Académiai Kiadó, Budapest (1967).
- [4] M. Rajagopalan and B. M. Schreiber: Ergodic automorphisms and affine transformations. Proc. Japan Acad., 46, 633-636 (1970).
- [5] R. Sato: Continuous affine transformations of locally compact totally disconnected groups. Proc. Japan Acad., 46, 143-146 (1970).
- [6] R. Schatten: A Theory of Cross Spaces. Annals of Math. Studies, No. 26, Princeton University Press, Princeton, N. J. (1950).