143. Bordism Algebra of Involutions

By Fuichi Uchida
Osaka University

(Comm. by Kenjiro Shoda, M. J. A., Sept. 12, 1970)

1. Introduction. Let \mathfrak{R}_{*} denote the unoriented Thom bordism ring and let $\mathfrak{R}_{*}\left(Z_{2}\right)$ denote the unoriented bordism group of fixed point free involutions. Then $\mathfrak{n}_{*}\left(Z_{2}\right)$ is a free \mathfrak{N}_{*}-module with basis $\left\{\left[S^{n}, a\right]\right\}_{n \geq 0}$, where $\left[S^{n}, a\right]$ is the bordism class of the antipodal involution on the n-sphere ([2], Theorem 23.2).

If we regard $\mathfrak{N}_{*}\left(Z_{2}\right)$ as the bordism group of principal Z_{2}-bundles over closed manifolds, the tensor product of principal Z_{2}-bundles induces a multiplication in $\mathfrak{R}_{*}\left(Z_{2}\right)$, making it an algebra over \mathfrak{R}_{*}. Explicitly, we consider involutions T_{1} and T_{2} on M_{1}^{m} and M_{2}^{n} respectively, then both $T_{1} \times 1$ and $1 \times T_{2}$ induce the same involution T on $M_{1}^{m} \times M_{2}^{n} / T_{1} \times T_{2}$. We have then the multiplication

$$
\left[M_{1}^{m}, T_{1}\right]\left[M_{2}^{n}, T_{2}\right]=\left[M_{1}^{m} \times M_{2}^{n} / T_{1} \times T_{2}, T\right]
$$

J. C. Su [6] stated that $\mathfrak{R}_{*}\left(Z_{2}\right)$ is an exterior algebra over \mathfrak{R}_{*} with generators in each dimension $2^{n}(n=0,1,2, \cdots)$ and C. S. Hoo [4] showed a multiplicative relation in $\mathfrak{R}_{*}\left(Z_{2}\right)$ which is equivalent to (2.6) below. In this note, we show the following relation.

Theorem. $\quad\left[S^{2 n+1}, a\right]=\left[S^{1}, a\right] \cdot\left(\sum_{k=0}^{n}\left[P^{2 k}\right]\left[S^{2 n-2 k}, a\right]\right)$ for all n.
As an application we show $z_{2 k}(k=1,2,3, \ldots)$ in the following result due to Boardman ([1], Theorem 8.1) is nothing else than $\left[P^{2 k}\right]=\left[S^{2 k} / a\right]$:

There exist elements $z_{2}, z_{4}, z_{5}, z_{6}, z_{8}, \cdots$ in \mathfrak{n}_{*}, uniquely defined by the condition that

$$
P=w_{1}+z_{2} w_{1}^{3}+z_{4} w_{1}^{5}+z_{5} w_{1}^{6}+z_{6} w_{1}^{7}+z_{8} w_{1}^{9}+\cdots
$$

(omitting terms of the form $z_{k-1} w_{1}^{k}$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{R}^{*}(B O(1))$. Moreover, these elements z_{k} are a set of polynomial generators for \mathfrak{N}_{*}.
2. Bordism algebra of involutions. Let us summarize here what is known about \mathfrak{n}_{*}-module $\mathfrak{n}_{*}\left(Z_{2}\right)$. It has been shown that $\mathfrak{n}_{*}\left(Z_{2}\right)$ is a free Ω_{*}-module with basis $\left[S^{n}, a\right](n=0,1,2, \ldots)$, where S^{n} is an n-sphere and a the antipodal involution on S^{n}. Let

$$
\Delta: \mathfrak{N}_{*}\left(Z_{2}\right) \rightarrow \mathfrak{N}_{*}\left(Z_{2}\right)
$$

be the Smith homomorphism ([2], Theorem 26.1). This is an \mathfrak{R}_{*}-module homomorphism of degree -1 , and it can be described as follows. Suppose (M^{n}, T) is a differentiable fixed point free involution on a
closed manifold M^{n} and $g:\left(M^{n}, T\right) \rightarrow\left(S^{N}, a\right)$ is a differentiable equivariant map which is transverse regular on S^{N-1}. Then

$$
\Delta\left(\left[M^{n}, T\right)\right]=\left[g^{-1}\left(S^{N-1}\right), T \mid g^{-1}\left(S^{N-1}\right)\right] .
$$

From this it is clear that $\Delta\left(\left[S^{n}, a\right]\right)=\left[S^{n-1}, a\right]$ for all n (with understanding that $\left[S^{k}, a\right]=0$ for $k<0$).

Let $\varepsilon: \mathfrak{N}_{*}\left(Z_{2}\right) \rightarrow \mathfrak{n}_{*}$ and $\iota: \mathfrak{N}_{*} \rightarrow \mathfrak{N}_{*}\left(Z_{2}\right)$ be the \mathfrak{N}_{*}-algebra homomorphisms defined by

$$
\varepsilon\left(\left[M^{n}, T\right]\right)=\left[M^{n} / T\right] \quad \text { and } \quad \iota\left(\left[M^{n}\right]\right)=\left[M^{n}\right]\left[S^{0}, a\right]
$$

respectively. Since $\varepsilon \cdot \iota=$ identity and $\left[S^{0}, a\right]$ is the identity element of $\mathfrak{n}_{*}\left(Z_{2}\right)$, so we can identify \mathfrak{n}_{*} with the subalgebra $\iota\left(\mathfrak{n}_{*}\right)$ of $\mathfrak{n}_{*}\left(Z_{2}\right)$.

Regard $S^{2 n+1}$ as the unit sphere in the complex ($n+1$)-space C^{n+1}, and let

$$
\mu: S^{1} \times S^{2 n+1} \rightarrow S^{2 n+1}
$$

be the map defined by $\mu\left(z,\left(z_{0}, z_{1}, \cdots, z_{n}\right)\right)=\left(z z_{0}, z z_{1}, \cdots, z z_{n}\right)$.
Proposition 2.1. (C. S. Hoo) $\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]=0$ for all n.
Proof. C. S. Hoo [4] showed this relation by making use of the involution numbers ([2], 23.1). Here we give a geometrical proof. Let

$$
f: S^{1} \times S^{2 n+1} \rightarrow S^{1} \times S^{2 n+1}
$$

be the map defined by $f(x, y)=(x, \mu(x, y))$. Then

$$
f \circ(a \times a)=(a \times 1) \circ f \quad \text { and } \quad f \circ(1 \times a)=(1 \times a) \circ f .
$$

Therefore f induces an equivariant diffeomorphism between

$$
\left(S^{1} \times S^{2 n+1} / a \times a, 1 \times a\right) \quad \text { and } \quad\left(\left(S^{1} / a\right) \times S^{2 n+1}, 1 \times a\right)
$$

and hence $\quad\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]=\left[P^{1}\right]\left[S^{2 n+1}, a\right]=0 . \quad$ q.e.d.
Remark. There is a canonical principal S^{1}-bundle $P^{2 n+1} \rightarrow C P^{n}$. Thus $\left[P^{2 n+1}\right]=0$ for all n, since $P^{2 n+1}$ is the boundary of the associated disk bundle of $P^{2 n+1} \rightarrow C P^{n}$.

Lemma 2.2.
(a) $\quad \Delta^{2}\left(\left[S^{1}, a\right]\left[S^{k}, a\right]\right)=\left[S^{1}, a\right]\left[S^{k-2}, a\right]$ for all $k \geq 2$,
(b) $\quad \varepsilon \Delta\left(\left[S^{1}, a\right]\left[S^{k}, a\right]\right)=0$ for all $k \geq 1$.

Proof. Let $S_{0}^{2 n}, S^{2 n}$ and $S^{2 n-1}$ denote the submanifolds of $S^{2 n+1}$ defined by

$$
\begin{aligned}
S_{0}^{2 n} & =\left\{\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in S^{2 n+1} \mid z_{0} \text { is real }\right\}, \\
S^{2 n} & =\left\{\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in S^{2 n+1} \mid z_{n} \text { is real }\right\}, \\
S^{2 n-1} & =\left\{\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in S^{2 n+1} \mid z_{n}=0\right\} .
\end{aligned}
$$

Then both $\mu: S^{1} \times S^{2 n+1} \rightarrow S^{2 n+1}$ and $\mu \mid S^{1} \times S_{0}^{2 n}$ are transverse regular on $S^{2 n-\epsilon}(\varepsilon=0,1)$. On the other hand, $\mu \circ(a \times a)=\mu$ and $\mu \circ(1 \times a)=a \circ \mu$. Thus μ induces an equivariant map

$$
\hat{\mu}:\left(S^{1} \times S^{2 n+1} / a \times a, 1 \times a\right) \rightarrow\left(S^{2 n+1}, a\right)
$$

which is transverse regular on $S^{2 n-\varepsilon}(\varepsilon=0,1)$, and

$$
\hat{\mu}^{-1}\left(S^{2 n-1}\right)=\left(S^{1} \times S^{2 n-1} / a \times a\right)
$$

This shows

$$
\Delta^{2}\left(\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]\right)=\left[S^{1}, a\right]\left[S^{2 n-1}, a\right]
$$

and

$$
\Delta^{2}\left(\left[S^{1}, a\right]\left[S_{0}^{2 n}, a\right]\right)=\left[S^{1}, a\right]\left[S_{0}^{2 n-2}, a\right]
$$

for $n \geq 1$. This proves (a).
Next, in general, $\varepsilon \Delta\left(\left[S^{m}, a\right]\left[S^{n}, a\right]\right)$ is the bordism class of the hypersurface $H_{m, n}$ which is the subset in $P^{m} \times P^{n}$ defined by the equation

$$
x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{p} y_{p}=0
$$

where $p=\min (m, n)$, and $\left(x_{0}, x_{1}, \cdots, x_{m}\right)$ and ($y_{0}, y_{1}, \cdots, y_{n}$) are the standard homogeneous coordinates in P^{m} and P^{n} respectively. Then it has been verified by Conner and Floyd ([3], Lemma 2.2) that $\left[H_{1, k}\right]=0$ for all $k \geq 1$. Thus

$$
\varepsilon \Delta\left(\left[S^{1}, a\right]\left[S^{k}, a\right]\right)=0 \text { for } k \geq 1
$$

Corollary 2.3. $\Delta^{2}\left(\left[S^{1}, a\right] x\right)=\left[S^{1}, a\right] \Delta^{2}(x)$ for $x \in \mathfrak{N}_{*}\left(Z_{2}\right)$.
Remark. We have relations

$$
\begin{equation*}
\Delta^{4}\left(\left[S^{k}, a\right] x\right)=\left[S^{k}, a\right] \Delta^{4}(x) \text { for } k \leq 3, \tag{1}
\end{equation*}
$$

$$
\text { (2) } \quad \Delta^{8}\left(\left[S^{k}, a\right] x\right)=\left[S^{k}, a\right] \Delta^{8}(x) \text { for } k \leq 7 \text {, }
$$

by making use of quaternions and Cayley numbers instead of complex numbers.

Theorem 2.4. $\left[S^{2 n+1}, a\right]=\left[S^{1}, a\right] \cdot\left(\sum_{k=0}^{n}\left[P^{2 k}\right]\left[S^{2 n-2 k}, a\right]\right)$ for all n.
Proof. Put $y_{n}=\left[S^{2 n+1}, a\right]+\left[S^{1}, a\right] \cdot\left(\sum_{k=0}^{n}\left[P^{2 k}\right]\left[S^{2 n-2 k}, a\right]\right)$, then $\Delta^{2}\left(y_{n}\right)$ $=y_{n-1}$ from (2.3). We show $y_{n}=0$ by induction on n. It is clear that $y_{0}=0$, so we suppose $y_{n-1}=0$ for some $n \geq 1$. Since $\Delta^{2}\left(y_{n}\right)=0$, we can find x_{0}, x_{1} in \mathfrak{N}_{*} such that

$$
y_{n}=x_{1}\left[S^{1}, a\right]+x_{0} .
$$

Then

$$
x_{0}=\varepsilon\left(y_{n}\right)+x_{1} \varepsilon\left(\left[S^{1}, a\right]\right)=0,
$$

and hence

$$
y_{n}=x_{1}\left[S^{1}, a\right] .
$$

Next

$$
\begin{aligned}
x_{1} & =\varepsilon \Delta\left(y_{n}\right) \\
& =\varepsilon\left(\left[S^{2 n}, a\right]\right)+\sum_{k=0}^{n}\left[P^{2 k}\right] \cdot \varepsilon \Delta\left(\left[S^{1}, a\right]\left[S^{2 n-2 k}, a\right]\right) \\
& =\varepsilon\left(\left[S^{2 n}, a\right]\right)+\left[P^{2 n}\right] \cdot \varepsilon \Delta\left(\left[S^{1}, a\right]\left[S^{0}, a\right]\right) \\
& =\left[P^{2 n}\right]+\left[P^{2 n}\right]=0
\end{aligned}
$$

by (2.2(b)). Thus $y_{n}=0$.
q.e.d.

Corollary 2.5. $\left[S^{1}, a\right]\left[S^{2 n}, a\right]=\sum_{i=0}^{n} a_{2 i}\left[S^{2 n-2 i+1}, a\right]$, where the element $a_{2 i}$ in $\Re_{2 i}$ is defined by $a_{0}=1$ and $\sum_{i=0}^{k} a_{2 i}\left[P^{2 k-2 i}\right]=0$ for $k \geq 1$.

Proof.

$$
\begin{aligned}
\sum_{i=0}^{n} & a_{2 i}\left[S^{2 n-2 i+1}, a\right] \\
& =\sum_{i=0}^{n} a_{2 i}\left[S^{1}, a\right] \cdot\left(\sum_{j=0}^{n-i}\left[P^{2 j}\right]\left[S^{2 n-2 i-2 j}, a\right]\right) \\
& =\sum_{k=0}^{n}\left[S^{1}, a\right]\left[S^{2 n-2 k}, a\right] \cdot\left(\sum_{i=0}^{n} a_{2 i}\left[P^{2 k-2 i}\right]\right) \\
& =\left[S^{1}, a\right]\left[S^{2 n}, a\right] .
\end{aligned}
$$

q.e.d.

Corollary 2.6 (C. S. Hoo). $\left[S^{2 m+1}, a\right]\left[S^{2 n+1}, a\right]=0$.
Proof. This follows from (2.1) and (2.4).
q.e.d.

Corollary 2.7. $\varepsilon d^{2}\left(\left[S^{2 m+1}, a\right]\left[S^{n}, a\right]\right)=0$ for all m and n.
Proof. By (2.4), $\left[S^{2 m+1}, a\right]=\left[S^{1}, a\right] x$ for some x in $\mathfrak{N}_{*}\left(Z_{2}\right)$. Then, from (2.3),

$$
\begin{aligned}
& \varepsilon \Delta^{2}\left(\left[S^{2 m+1}, a\right]\left[S^{n}, a\right]\right)=\varepsilon \Delta^{2}\left(\left[S^{1}, a\right]\left(x\left[S^{n}, a\right]\right)\right) \\
& \quad=\varepsilon\left(\left[S^{1}, a\right] \Delta^{2}\left(x\left[S^{n}, a\right]\right)\right)=\left[P^{1}\right] \varepsilon \Delta^{2}\left(x\left[S^{n}, a\right]\right)=0 . \quad \text { q.e.d. }
\end{aligned}
$$

3. Primitive element. In his note, J. M. Boardman stated the following result ([1], Theorem 8.1) :

There exist elements $z_{2}, z_{4}, z_{5}, z_{8}, z_{8}, \cdots$ in \mathfrak{n}_{*}, uniquely defined by the condition that

$$
P=w_{1}+z_{2} w_{1}^{3}+z_{4} w_{1}^{5}+z_{5} w_{1}^{6}+z_{6} w_{1}^{7}+z_{8} w_{1}^{9}+\cdots
$$

(omitting terms of the form $z_{k-1} w_{1}^{k}$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{R}^{*}(B O(1))$. Moreover, these elements z_{k} are a set of polynomial generators for \mathfrak{N}_{*}.

Put $z_{0}=\left[P^{0}\right]$, then we can state the following result which is essentially proved by M. Kamata [5], so we omit the proof.

Lemma 3.1. Let $\alpha_{i}(m, n)$ be an element in \mathfrak{n}_{m+n-i}, defined by the condition

$$
\left[S^{m}, a\right]\left[S^{n}, a\right]=\sum_{i=0}^{m+n} \alpha_{i}(m, n)\left[S^{i}, a\right] .
$$

Then the following relations hold.
(a) $\sum_{i \geq 1} z_{i-1} \alpha_{k+i}(m, n)=\sum_{i \geq 1} z_{i-1}\left(\alpha_{k}(m-i, n)+\alpha_{k}(m, n-i)\right)$ for all $k \geq 0$,
(b) (J. C. Su) $\quad \alpha_{m+n}(m, n)=\binom{m+n}{m} \bmod 2$,
(c) $\alpha_{0}(m, n)=\left[P^{m}\right]\left[P^{n}\right]+\sum_{i=1}^{m+n} \alpha_{i}(m, n)\left[P^{i}\right]$.

Theorem 3.2. $z_{2 k}=\left[P^{2 k}\right]$ for all k.
Proof. $\quad \alpha_{k}(1,2 n+1)=0$ for all n and k, since

$$
\left[S^{1}, a\right]\left[S^{2 n+1}, a\right]=0
$$

by (2.1). Hence

$$
\begin{equation*}
\alpha_{1}(0,2 n+1)+\sum_{i \geq 0} z_{2 i} \alpha_{1}(1,2 n-2 i)=0, \tag{3.2.1}
\end{equation*}
$$

from (3.1(a)). On the other hand,

$$
\begin{aligned}
{\left[S^{2 n+1}, a\right] } & =\sum_{i=0}^{n}\left[S^{1}, a\right]\left[S^{2 n-2 i}, a\right]\left[P^{2 i}\right] \\
& =\sum_{i=0}^{n} \sum_{k=0}^{2 n-2 i+1} \alpha_{k}(1,2 n-2 i)\left[P^{2 i}\right]\left[S^{k}, a\right],
\end{aligned}
$$

from (2.4). Since $\mathfrak{n}_{*}\left(Z_{2}\right)$ is a free \mathfrak{R}_{*}-module with basis $\left\{\left[S^{k}, a\right]\right\}$, we have

$$
\begin{equation*}
\sum_{i=0}^{n} \alpha_{1}(1,2 n-2 i)\left[P^{2 i}\right]=0 \quad \text { for } n \geq 1 \tag{3.2.2}
\end{equation*}
$$

Then we have a desired result, by induction, from (3.2.1), (3.2.2), $\alpha_{1}(0,1)=1$ and $\alpha_{1}(0,2 n+1)=0$ for $n \geq 1$.

Remark. We could not determine the elements $z_{2 k+1}$, but if we use the relation (3.1), we are able to calculate $z_{2 k+1}$. For example,

$$
\begin{aligned}
z_{5} & =\left[H_{2,4}\right], \\
z_{9} & =\left[H_{2,8}\right]+\left[H_{2,4}\right]\left[P^{2}\right]^{2}, \\
z_{11} & =\left[H_{4,8}\right]+\left[H_{2,4}\right]\left[P^{6}\right]+\left[H_{2,4}\right]\left[P^{4}\right]\left[P^{2}\right] .
\end{aligned}
$$

The elements $\alpha_{i}(m, n)$ are also calculable from (3.1). For example,

$$
\left[S^{2}, a\right]\left[S^{4}, a\right]=\left[S^{6}, a\right]+\left[H_{2,4}\right]\left[S^{1}, a\right]+\left[P^{6}\right]+\left[P^{4}\right]\left[P^{2}\right],
$$

$$
\left[S^{3}, a\right]\left[S^{6}, a\right]=\left[P^{2}\right]\left[S^{7}, a\right]+\left[P^{6}\right]\left[S^{3}, a\right]
$$

References

[1] J. M. Boardman: Unoriented bordism and cobordism (mimeographed). University of Warwick (1966).
[2] P. E. Conner and E. E. Floyd: Differentiable Periodic Maps. Springer (1964).
[3] -: Fibering within a cobordism class. Michigan Math. J., 12, 33-47 (1965).
[4] C. S. Hoo: Remarks on the bordism algebra of involutions. Proc. Amer. Math. Soc., 17, 1083-1086 (1966).
[5] M. Kamata: On the ring structure of $U_{*}(B U(1))$. Osaka J. Math. (to appear).
[6] J. C. Su: A note on the bordism algebra of involutions. Michigan Math. J., 12, 25-31 (1965).

