No. 7]

143. Bordism Algebra of Involutions

By Fuichi UCHIDA Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1970)

1. Introduction. Let \mathfrak{N}_* denote the unoriented Thom bordism ring and let $\mathfrak{N}_*(Z_2)$ denote the unoriented bordism group of fixed point free involutions. Then $\mathfrak{N}_*(Z_2)$ is a free \mathfrak{N}_* -module with basis $\{[S^n, a]\}_{n\geq 0}$, where $[S^n, a]$ is the bordism class of the antipodal involution on the *n*-sphere ([2], Theorem 23.2).

If we regard $\Re_*(Z_2)$ as the bordism group of principal Z_2 -bundles over closed manifolds, the tensor product of principal Z_2 -bundles induces a multiplication in $\Re_*(Z_2)$, making it an algebra over \Re_* . Explicitly, we consider involutions T_1 and T_2 on M_1^m and M_2^n respectively, then both $T_1 \times 1$ and $1 \times T_2$ induce the same involution T on $M_1^m \times M_2^n/T_1 \times T_2$. We have then the multiplication

 $[M_1^m, T_1][M_2^n, T_2] = [M_1^m \times M_2^n / T_1 \times T_2, T].$

J. C. Su [6] stated that $\mathfrak{N}_*(Z_2)$ is an exterior algebra over \mathfrak{N}_* with generators in each dimension 2^n $(n=0,1,2,\cdots)$ and C. S. Hoo [4] showed a multiplicative relation in $\mathfrak{N}_*(Z_2)$ which is equivalent to (2.6) below. In this note, we show the following relation.

Theorem.
$$[S^{2n+1}, a] = [S^1, a] \cdot \left(\sum_{k=0}^n [P^{2k}][S^{2n-2k}, a]\right)$$
 for all n .

As an application we show z_{2k} $(k=1,2,3,\cdots)$ in the following result due to Boardman ([1], Theorem 8.1) is nothing else than $[P^{2k}] = [S^{2k}/a]$:

There exist elements $z_2, z_4, z_5, z_6, z_8, \cdots$ in \Re_* , uniquely defined by the condition that

$$P = w_1 + z_2 w_1^3 + z_4 w_1^5 + z_5 w_1^6 + z_6 w_1^7 + z_8 w_1^9 + \cdots$$

(omitting terms of the form $z_{k-1}w_1^k$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{N}^*(BO(1))$. Moreover, these elements z_k are a set of polynomial generators for \mathfrak{N}_* .

2. Bordism algebra of involutions. Let us summarize here what is known about \mathfrak{N}_* -module $\mathfrak{N}_*(Z_2)$. It has been shown that $\mathfrak{N}_*(Z_2)$ is a free \mathfrak{N}_* -module with basis $[S^n, a]$ $(n=0, 1, 2, \cdots)$, where S^n is an *n*-sphere and *a* the antipodal involution on S^n . Let

$$I: \mathfrak{N}_*(Z_2) \to \mathfrak{N}_*(Z_2)$$

be the Smith homomorphism ([2], Theorem 26.1). This is an \mathfrak{N}_* -module homomorphism of degree -1, and it can be described as follows. Suppose (M^n, T) is a differentiable fixed point free involution on a

F. UCHIDA

closed manifold M^n and $g: (M^n, T) \rightarrow (S^N, a)$ is a differentiable equivariant map which is transverse regular on S^{N-1} . Then

 $\Delta([M^n, T)] = [g^{-1}(S^{N-1}), T | g^{-1}(S^{N-1})].$

From this it is clear that $\Delta([S^n, a]) = [S^{n-1}, a]$ for all *n* (with understanding that $[S^k, a] = 0$ for k < 0).

Let $\varepsilon: \mathfrak{N}_*(Z_2) \to \mathfrak{N}_*$ and $\iota: \mathfrak{N}_* \to \mathfrak{N}_*(Z_2)$ be the \mathfrak{N}_* -algebra homomorphisms defined by

 $\varepsilon([M^n, T]) = [M^n/T]$ and $\iota([M^n]) = [M^n][S^0, a]$

respectively. Since $\varepsilon \cdot \iota =$ identity and $[S^0, a]$ is the identity element of $\mathfrak{N}_*(Z_2)$, so we can identify \mathfrak{N}_* with the subalgebra $\iota(\mathfrak{N}_*)$ of $\mathfrak{N}_*(Z_2)$.

Regard S^{2n+1} as the unit sphere in the complex (n+1)-space C^{n+1} , and let

 $\mu: S^1 \times S^{2n+1} \rightarrow S^{2n+1}$

be the map defined by $\mu(z, (z_0, z_1, \dots, z_n)) = (zz_0, zz_1, \dots, zz_n)$.

Proposition 2.1. (C. S. Hoo) $[S^1, a][S^{2n+1}, a] = 0$ for all n.

Proof. C. S. Hoo [4] showed this relation by making use of the involution numbers ([2], 23.1). Here we give a geometrical proof. Let $f: S^1 \times S^{2n+1} \rightarrow S^1 \times S^{2n+1}$

be the map defined by $f(x, y) = (x, \mu(x, y))$. Then

 $f \circ (a \times a) = (a \times 1) \circ f$ and $f \circ (1 \times a) = (1 \times a) \circ f$.

Therefore f induces an equivariant diffeomorphism between

 $(S^1 \times S^{2n+1} / a \times a, 1 \times a)$ and $((S^1 / a) \times S^{2n+1}, 1 \times a)$, and hence $[S^1, a][S^{2n+1}, a] = [P^1][S^{2n+1}, a] = 0.$ q.e.d.

Remark. There is a canonical principal S^1 -bundle $P^{2n+1} \rightarrow CP^n$. Thus $[P^{2n+1}]=0$ for all n, since P^{2n+1} is the boundary of the associated disk bundle of $P^{2n+1} \rightarrow CP^n$.

Lemma 2.2.

(a) $\Delta^2([S^1, a][S^k, a]) = [S^1, a][S^{k-2}, a] \text{ for all } k \ge 2,$

(b) $\varepsilon \Delta([S^1, a][S^k, a]) = 0 \text{ for all } k \ge 1.$

Proof. Let S_0^{2n} , S^{2n} and S^{2n-1} denote the submanifolds of S^{2n+1} defined by

$$S_0^{2n} = \{(z_0, z_1, \dots, z_n) \in S^{2n+1} | z_0 \text{ is real}\}, \\ S_0^{2n} = \{(z_0, z_1, \dots, z_n) \in S^{2n+1} | z_n \text{ is real}\}, \\ S_0^{2n-1} = \{(z_0, z_1, \dots, z_n) \in S^{2n+1} | z_n = 0\}.$$

 $S^{2n-1} = \{(z_0, z_1, \dots, z_n) \in S^{2n+1} | z_n = 0\}.$ Then both $\mu: S^1 \times S^{2n+1} \to S^{2n+1}$ and $\mu | S^1 \times S^{2n}_0$ are transverse regular on $S^{2n-\epsilon}$ ($\epsilon = 0, 1$). On the other hand, $\mu \circ (a \times a) = \mu$ and $\mu \circ (1 \times a) = a \circ \mu$. Thus μ induces an equivariant map

 $\hat{\mu}: (S^1 \times S^{2n+1} / a \times a, 1 \times a) \rightarrow (S^{2n+1}, a)$

which is transverse regular on S^{2n-s} ($\varepsilon = 0, 1$), and

$$\hat{\mu}^{-1}(S^{2n-1}) = (S^1 \times S^{2n-1} / a \times a).$$

This shows

$$\Delta^{2}([S^{1}, a][S^{2n+1}, a]) = [S^{1}, a][S^{2n-1}, a]$$

and

$$\Delta^{2}([S^{1}, a][S^{2n}_{0}, a]) = [S^{1}, a][S^{2n-2}_{0}, a]$$

for $n \ge 1$. This proves (a).

Next, in general, $\varepsilon \Delta([S^m, a][S^n, a])$ is the bordism class of the hypersurface $H_{m,n}$ which is the subset in $P^m \times P^n$ defined by the equation

$$x_0y_0 + x_1y_1 + x_2y_2 + \cdots + x_py_p = 0$$
,

where $p = \min(m, n)$, and (x_0, x_1, \dots, x_m) and (y_0, y_1, \dots, y_n) are the standard homogeneous coordinates in P^m and P^n respectively. Then it has been verified by Conner and Floyd ([3], Lemma 2.2) that $[H_{1,k}]=0$ for all $k \ge 1$. Thus

$$\varepsilon \varDelta([S^1, a][S^k, a]) = 0 \text{ for } k \ge 1.$$
 q.e.d.

Corollary 2.3. $\Delta^2([S^1, a]x) = [S^1, a]\Delta^2(x)$ for $x \in \mathfrak{N}_*(\mathbb{Z}_2)$.

Remark. We have relations

(1) $\Delta^4([S^k, a]x) = [S^k, a]\Delta^4(x) \text{ for } k \le 3,$

(2) $\Delta^{8}([S^{k}, a]x) = [S^{k}, a]\Delta^{8}(x) \text{ for } k \leq 7,$

by making use of quaternions and Cayley numbers instead of complex numbers.

Theorem 2.4.
$$[S^{2n+1}, a] = [S^1, a] \cdot \left(\sum_{k=0}^n [P^{2k}][S^{2n-2k}, a]\right)$$
 for all n .
Proof. Put $y_n = [S^{2n+1}, a] + [S^1, a] \cdot \left(\sum_{k=0}^n [P^{2k}][S^{2n-2k}, a]\right)$, then $\Delta^2(y_n)$

 $=y_{n-1}$ from (2.3). We show $y_n=0$ by induction on n. It is clear that $y_0=0$, so we suppose $y_{n-1}=0$ for some $n\geq 1$. Since $\Delta^2(y_n)=0$, we can find x_0, x_1 in \mathfrak{N}_* such that

 $y_n = x_1[S^1, a] + x_0.$

Then

$$x_0 = \varepsilon(y_n) + x_1 \varepsilon([S^1, a]) = 0$$

and hence

$$y_n = x_1[S^1, a].$$

Next

$$\begin{aligned} x_1 &= \varepsilon \varDelta(y_n) \\ &= \varepsilon ([S^{2n}, a]) + \sum_{k=0}^n [P^{2k}] \cdot \varepsilon \varDelta ([S^1, a][S^{2n-2k}, a]) \\ &= \varepsilon ([S^{2n}, a]) + [P^{2n}] \cdot \varepsilon \varDelta ([S^1, a][S^0, a]) \\ &= [P^{2n}] + [P^{2n}] = 0 \end{aligned}$$

by (2.2(b)). Thus $y_n = 0$.

Corollary 2.5. $[S^1, a][S^{2n}, a] = \sum_{i=0}^n a_{2i}[S^{2n-2i+1}, a]$, where the element a_{2i} in \mathfrak{N}_{2i} is defined by $a_0 = 1$ and $\sum_{i=0}^k a_{2i}[P^{2k-2i}] = 0$ for $k \ge 1$.

q.e.d.

No. 7]

Proof.

$$\sum_{i=0}^{n} a_{2i}[S^{2n-2i+1}, a]$$

$$= \sum_{i=0}^{n} a_{2i}[S^{1}, a] \cdot \left(\sum_{j=0}^{n-i} [P^{2j}][S^{2n-2i-2j}, a]\right)$$

$$= \sum_{k=0}^{n} [S^{1}, a][S^{2n-2k}, a] \cdot \left(\sum_{i=0}^{k} a_{2i}[P^{2k-2i}]\right)$$

$$= [S^{1}, a][S^{2n}, a].$$
q.e.d.

Corollary 2.6 (C. S. Hoo), $[S^{2m+1}, a][S^{2n+1}, a]=0$.

Proof. This follows from (2.1) and (2.4). q.e.d.

Corollary 2.7. $\varepsilon \Delta^2([S^{2m+1}, a][S^n, a]) = 0$ for all m and n.

Proof. By (2.4), $[S^{2m+1}, a] = [S^1, a]x$ for some x in $\mathfrak{N}_*(Z_2)$. Then, from (2.3),

$$\varepsilon \Delta^{2}([S^{2m+1}, a][S^{n}, a]) = \varepsilon \Delta^{2}([S^{1}, a](x[S^{n}, a]))$$

$$= \varepsilon([S^1, a] \Delta^2(x[S^n, a])) = [P^1] \varepsilon \Delta^2(x[S^n, a]) = 0.$$
 q.e.d.

3. Primitive element. In his note, J. M. Boardman stated the following result ([1], Theorem 8.1):

There exist elements $z_2, z_4, z_5, z_8, z_8, \cdots$ in \Re_* , uniquely defined by the condition that

$$P = w_1 + z_2 w_1^3 + z_4 w_1^5 + z_5 w_1^6 + z_6 w_1^7 + z_8 w_1^9 + \cdots$$

(omitting terms of the form $z_{k-1}w_1^k$ when k is a power of 2) is a primitive element in the Hopf algebra $\mathfrak{N}^*(BO(1))$. Moreover, these elements z_k are a set of polynomial generators for \mathfrak{N}_* .

Put $z_0 = [P^0]$, then we can state the following result which is essentially proved by M. Kamata [5], so we omit the proof.

Lemma 3.1. Let $\alpha_i(m, n)$ be an element in \mathfrak{N}_{m+n-i} , defined by the condition

$$[S^{m}, a][S^{n}, a] = \sum_{i=0}^{m+n} \alpha_{i}(m, n)[S^{i}, a].$$

Then the following relations hold.

(a) $\sum_{i\geq 1} z_{i-1}\alpha_{k+i}(m,n) = \sum_{i\geq 1} z_{i-1}(\alpha_k(m-i,n) + \alpha_k(m,n-i))$ for all $k\geq 0$,

(b) (J. C. Su)
$$\alpha_{m+n}(m,n) = \binom{m+n}{m} \mod 2$$
,
(c) $\alpha_0(m,n) = [P^m][P^n] + \sum_{i=1}^{m+n} \alpha_i(m,n)[P^i]$.
Theorem 3.2. $z_{2k} = [P^{2k}]$ for all k.
Proof. $\alpha_k(1,2n+1) = 0$ for all n and k, since
 $[S^1, a][S^{2n+1}, a] = 0$

by (2.1). Hence

(3.2.1) $\alpha_1(0, 2n+1) + \sum_{i\geq 0} z_{2i}\alpha_1(1, 2n-2i) = 0$, from (3.1(a)). On the other hand,

618

No. 7]

$$egin{aligned} & [S^{2n+1},a] = \sum\limits_{i=0}^n [S^1,a] [S^{2n-2i},a] [P^{2i}] \ & = \sum\limits_{i=0}^n \sum\limits_{k=0}^{2n-2i+1} lpha_k (1,2n-2i) [P^{2i}] [S^k,a], \end{aligned}$$

from (2.4). Since $\mathfrak{N}_*(\mathbb{Z}_2)$ is a free \mathfrak{N}_* -module with basis $\{[S^k, a]\}$, we have

(3.2.2)
$$\sum_{i=0}^{n} \alpha_{i}(1, 2n-2i)[P^{2i}] = 0 \quad \text{for } n \ge 1.$$

Then we have a desired result, by induction, from (3.2.1), (3.2.2), $\alpha_1(0,1)=1$ and $\alpha_1(0,2n+1)=0$ for $n\geq 1$. q.e.d.

Remark. We could not determine the elements z_{2k+1} , but if we use the relation (3.1), we are able to calculate z_{2k+1} . For example,

$$\begin{split} & z_5 = [H_{2,4}], \\ & z_9 = [H_{2,8}] + [H_{2,4}][P^2]^2, \\ & z_{11} = [H_{4,8}] + [H_{2,4}][P^6] + [H_{2,4}][P^4][P^2]. \end{split}$$
The elements $\alpha_i(m,n)$ are also calculable from (3.1). For example, $[S^2, a][S^4, a] = [S^6, a] + [H_{2,4}][S^1, a] + [P^6] + [P^4][P^2], \\ & [S^3, a][S^6, a] = [P^2][S^7, a] + [P^6][S^3, a]. \end{split}$

References

- J. M. Boardman: Unoriented bordism and cobordism (mimeographed). University of Warwick (1966).
- [2] P. E. Conner and E. E. Floyd: Differentiable Periodic Maps. Springer (1964).
- [3] —: Fibering within a cobordism class. Michigan Math. J., 12, 33-47 (1965).
- [4] C. S. Hoo: Remarks on the bordism algebra of involutions. Proc. Amer. Math. Soc., 17, 1083-1086 (1966).
- [5] M. Kamata: On the ring structure of U_* (BU(1)). Osaka J. Math. (to appear).
- [6] J. C. Su: A note on the bordism algebra of involutions. Michigan Math. J., 12, 25-31 (1965).