193. On Closed Graph Theorem

By Michiko NAKAMURA

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 12, 1970)

This paper is to give a type of closed graph theorem for topological linear spaces similar to the one discussed in the previous paper [4], generalizing and simplifying the results obtained in [1], [2], and [3].

We make use of the notations in [4].

A filter Φ in a linear space E is said to be a *LS-filter* if Φ is generated by the complements of all the finite union of linear subspaces E_n $(n=1,2,\ldots)$ such that $E=\bigcup_{n=1}^{\infty}E_n$.

A subset A of a linear space E is said to be *linearly* open if for any straight line L in $E, L \cap A$ is open in L by its usual topology.

A filter Φ in a linear space E is said to be a *P*-filter if for every x in E there exists a linearly open set A such that either A is disjoint from Φ or Φ_A , considered as a filter in E, is finer than a *LS*-filter. (In general, we identify a filter Ψ in a subset of E with a filter in E generated by Ψ .)

A linear topological space E (in the sequel we suppose that every linear topological space is Hausdorff) is called a generalized netted space (called GN-space in the sequel) if there exists a sequence of Pfilters Φ_n $(n=1, 2, \cdots)$ such that every ultrafilter Ψ with $\Psi \supset \Phi_n$ $(n=1, 2, \cdots)$ converges in E.

E is called a *pre-GN-space* if there exists a sequence of *P*-filters Φ_n $(n=1,2,\cdots)$ such that every ultrafilter Ψ with $\Psi \supset \Phi_n$ $(n=1,2,\cdots)$ is a Cauchy-filter in *E*. The *P*-filters Φ_n , in these cases, are called defining filters for *E*.

Let φ be a linear mapping from a linear space E into a linear space F. The image $\varphi(A)$ of a linearly open subset A of E by φ is linearly open in $\varphi(E)$ and the inverse image $\varphi^{-1}(B)$ of a linearly open subset B in $\varphi(E)$ by φ is linearly open in E.

If φ is an one-to-one linear mapping from *E* into *F*, then the image $\varphi(\Phi)$ of a *P*-filter Φ in *E* is a *P*-filter.

If φ is a linear mapping from E into F, then the inverse image $\varphi^{-1}(\Phi)$ of a *P*-filter Φ in F such that $\varphi(E)$ is not disjoint from Φ is a *P*-filter in E. In particular, if E is a linear subspace of F, then for every *P*-filter Φ in F such that E is not disjoint from Φ, Φ_E is a *P*-filter in E, and a *P*-filter in E can be considered as a *P*-filter in F.

By virtue of these facts, we can see easily that the class of GN-

spaces, as in the case of quasi-Souslin spaces (in [4]), is closed by the following operations:

(1) The image $E = \varphi(F)$ of a GN-space F by a continuous linear mapping φ is a GN-space.

(2) The closed subspace E of a GN-space F is a GN-space.

(3) The product space $E = \prod_{n} E_{n}$ of GN-spaces E_{n} $(n=1,2,\cdots)$ is

a GN-space.

(4) The inductive limit E of GN-spaces E_n $(n=1,2,\cdots)$ is a GN-space.

First we prove that every metric linear space E is a pre-GN-space. Let d be the distance function in E. Put $U_n(x) = \left\{ y \in E \mid d(x, y) < \frac{1}{n} \right\}$.

Let Φ_n be the filter generated by the complements of all the finite union of $U_n(x)$ for all x in E. Then Φ_n is obviously a P-filter in E and we show that E is a pre-GN-space with the defining filters Φ_n $(n=1,2,\cdots)$. Let Ψ be an ultrafilter in E such that $\Psi \supset \Phi_n$ for every n, then there exists a sequence of elements x_n $(n=1,2,\cdots)$ in E such that $\Psi \ni U_n(x_n)$. Then Ψ is a Cauchy-filter in E.

Proposition. Let E be a linear topological space with a system of subspaces $E_{n_1,n_2,...,n_k}$ defined for every finite sequence $n_1, n_2, ..., n_k$ of natural numbers such that

$$E = \bigcup_{n=1}^{\infty} E_n, E_{n_1} = \bigcup_{n=1}^{\infty} E_{n_1,n}, \cdots,$$
$$E_{n_1,n_2,\dots,n_k} = \bigcup_{n=1}^{\infty} E_{n_1,n_2,\dots,n_k,n}, \cdots.$$

Suppose a topology of pre-GN-space is given on each $E_{n_1,n_2,...,n_k}$ such that for every infinite sequence $\{n_k\}_{k=1,2,...,n_k}$ if the restriction of a filter Ψ in $E_{n_1,n_2,...,n_k}$ is a Cauchy-filter for every k=1,2,..., then Ψ converges in E. Then E is a GN-space.

Proof. For each $\{n_1, n_2, \dots, n_k\}$, let $\Phi_{n_1, n_2, \dots, n_k}^i$ $(i=1, 2, \dots)$ be defining *P*-filters for $E_{n_1, n_2, \dots, n_k}, \Psi_{n_1, n_2, \dots, n_k}$ the filter generated by the complements in E_{n_1, n_2, \dots, n_k} of all the finite union of $E_{n_1, n_2, \dots, n_{k, n}}$ (n=1, $2, \dots)$, and Ψ_0 the filter generated by the complement in *E* of all the finite union of E_n $(n=1, 2, \dots)$. We will prove that *E* is a *GN*-space with the defining filters $\Phi_{n_1, n_2, \dots, n_k}^i, \Psi_{n_1, n_2, \dots, n_k}$ $(i, n_1, n_2, \dots, n_k)$ and Ψ_0 , these filters being consider as *P*-filters in *E*. Let Ψ be an ultrafilter in *E* such that $\Psi \supset \Phi_{n_1, n_2, \dots, n_k}^i, \Psi \supset \Psi_{n_1, n_2, \dots, n_k}$ for every i, n_1, n_2, \dots, n_k and $\Psi \supset \Psi_0$. From $\Psi \supset \Psi_0$ there exists a natural number n_1 such that $\Psi \ni E_{n_1, n_2}$. Continuing this process, we can find a sequence $\{n_k\}_{k=1,2}$... such that every E_{n_1, n_2, \dots, n_k} $(k=1, 2, \dots)$ belongs to Ψ . Since $\Psi \supset \Phi_{n_1, n_2, \dots, n_k}^i$ for every $i, k=1, 2, \dots$, the restriction of Ψ in E_{n_1, n_2, \dots, n_k} is a Cauchy-filter

No. 8]

for every $k=1,2,\cdots$, and hence, by the assumption, Ψ converges in E. Thus E is a GN-space.

Netted spaces of [1] and [2], and $\alpha\beta\gamma$ -representable spaces of [3] are GN-spaces, because they are special cases of the linear topological space E with a system of subspaces $E_{n_1,n_2,...,n_k}$ satisfying the condition of the proposition, where the topology given on each $E_{n_1,n_2,...,n_k}$ is metric.

Corresponding to the closed graph theorem for quasi-Souslin space in [4], we obtain the following

Theorem. Every graph closed linear mapping φ from a linear topological space F of second category into a GN-space E is continuous.

Proof. Let E be a GN-space with defining P-filters Φ_n . If we can prove that there exists a sequence of subsets A_i $(i=1,2,\cdots)$ of F such that A_i is everywhere second category in $F, A_i \supset A_{i+1}$, and, for every x in A_i , there exists a neighborhood U of x such that $U \cap A_i$ is disjoint from $\varphi^{-1}(\Phi_i)$, then the same argument as in the corresponding proof in [4] can be applied to complete our proof. We put $F=A_0$. Now we show that we obtain a sequence of subsets A_i $(i=1,2,\cdots)$ such that each A_i satisfies the following condition (*) in addition to the above condition.

For every x in A_i there exist a linearly open set $L \ni x$ in F (*) and a second category linear subspace $H \ni x$ of F such that $A_i \supset L \cap H$.

Clearly A_0 satisfies the condition (*). For each *i* when A_i is already determined, we determine A_{i+1} in the following way. Let $\{(V_{\lambda}, B_{\lambda})\}_{\lambda \in A}$ be a maximal family of pairs $(V_{\lambda}, B_{\lambda})$ with the following conditions (1) to (4):

- (1) B_{λ} is everywhere second category in non-void open set V_{λ} .
- (2) $A_i \supset B_\lambda$, B_λ is disjoint from $\varphi^{-1}(\Phi_{i+1})$.
- (3) B_{λ} satisfies the condition (*).
- (4) $V_{\lambda} \cap V_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$.

Put $A_{i+1} = \bigcup_{\lambda \in A} B_{\lambda}$. Suppose there exists an open set W such that $W \cap V_{\lambda}$ =0 for all $\lambda \in \Lambda$. For x in $W \cap A_i$, there exist a linearly open set $L \ni x$ in F and a second category linear subspace $H \ni x$ of F such that $W \cap A_i \supset L \cap H \ni x$. As Φ_{i+1} is a P-filter in $E, \varphi^{-1}(\Phi_{i+1})$ is also a P-filter in F. So there exists a linearly open set $M \ni x$ in F such that M is either disjoint from $\varphi^{-1}(\Phi_{i+1})$ or $\{\varphi^{-1}(\Phi_{i+1})\}_M$ is finer than a LS-filter Ψ defined by a sequence of subspaces F_k $(k=1,2,\cdots)$. Put $C=L \cap H \cap M$ in the first case, and, in the second case, $C=L \cap H \cap M \cap F_k$ where k is chosen as to let C be second category. Putting V=O(C) and $B=V \cap C$, we obtain a pair (V, B) and the family $\{(V_{\lambda}, B_{\lambda}), (V, B)\}$ satisfying (1), (2), (3), and (4), contradicting the maximality of $\{(V_i, B_i)\}_{i \in A}$. So we

848

No. 8]

have proved that $\bigcup_{\lambda \in A} V_{\lambda}$ is dense in F, and then it is obvious that A_{i+1} satisfies all the required conditions.

References

- H. G. Garnir: Some new results in classical functional analysis. Proceedings of the International Conference on Functional Analysis and Related Topics, 361-368 (1970).
- [2] M. De Wilde: Sur le théorème du graphe fermé. C. R. Acad. Sc. Paris, 265, série A, 376-379 (1967).
- [3] W. Slowikowski: On continuity of inverse operators. Bull. Amer. Math. Soc., 67 (5), 467-470 (1961).
- [4] M. Nakamura: On quasi-Souslin space and closed graph theorem. Proc. Japan Acad., 46 (6), 514-517 (1970).