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According to G. Viglino [7], a topological space (X, &) is said to
be C-compact if given a closed set A of X and a J-open covering UJ of
A, there is a finite number of elements of U, say U,,1<i<n, with
AcC\Jr,U,. It was shown by Viglino that in Hausdorff spaces the
following implications hold and neither of them is reversible:

compact = C-compact = minimal Hausdorff.
Here a space X is minimal Hausdorff if X is Hausdorff and each open
filter-base on X (i.e. a filter-base composed exclusively of open sets
of X) with a unique adherent point is convergent.

The main results of this note are that (1) the product of a C-compact
space and a compact space need not be C-compact in general, and that
(2) there exist minimal Hausdorff spaces of arbitrary infinite cardi-
nality which are not C-compact.

Theorem 1. For any topological space X, the following proper-
ties of X are equivalent:

(1) X is C-compact,

@) if A is a closed set of X and &F a family of closed sets of X
with NFNA=0, then there is a finite number of elements of F, say
F;, 1<i<n, with N,(Int F)NA=0.

B) if Ais a closed set of X and G an open filter-base on X whose
elements have non-empty traces with A, then there is an adherent
point of G in A.

Proof. (1) = (2). Let A be a closed subset of a C-compact
space X and & a family of closed sets of X with NFNA=0. Since
U={X—F|F e %} is a family of open sets of X covering A, there is a
finite number of elements of U, say U,=X—-F,,1<i<n, with
Ur,U,2A. Therefore, N, (Int F))=X—Jr,U,CX—A.

(2) = (8). Assume that there exist a closed set A and an open
filter-base ¢ on X having no adherent point in A whose elements have
non-empty traces with A. Since F={G|G ¢ G} is a family of closed
sets of X with NFNA=0, there is a finite number of elements of
F, say F;=G,, 1<i<n, with N, (Int F,)N A=0. Then we have
Nr.G:NA=0. Since G is a filter-base, there is an element G ¢ G with
GNA=0. This contradicts the assumption on G.

(@) = (1). Assume that X is not C-compact. There are a closed
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set A and a covering U of A consisting of open sets of X such that
for any finite number of elements of U their closures do not cover A.
Since G={X —Ug;lU'h.]n is finite, U,, € U} is an open filter-base on X
whose elements have non-empty traces with A, there is an adherent
point 2 of Gin A. Then z ¢ G for each Ge G. Particularly, x e X—U
=X—U for each Uec 9. Therefore, U is not a covering of A, a con-
tradiction. This completes the proof of Theorem 1.

Remark. In (8) of Theorem 1, if we replace G by “open filter-
base on A”, then each closed subspace of X is H-closed (absolutely
closed) under the condition of X being Hausdorff. A Hausdorff space
with this property is compact by Katétov [4].

Theorem 2. If the product [| X, of non-empty topological spaces
X, is C-compact, then so is X, for each 2.

Proof. Since the continuous image of a C-compact space is
C-compact, this is trivial.

In [7], Viglino asked whether the product of C-compact spaces is
C-compact or not. The following Example 1 answers this question.

Example 1. There exist a C-compact Housdorff space X and a
compact Hausdorff space Y such that X XY is not C-compact. Let X
be an example due to Viglino which is C-compact Hausdorff but not
compact. Since this example is necessary for later results, we will
describe it. Let
X={(a,b)]|a=1/n, b=1/m or a=1/n, b=0 or a=0, b=0; n, m e N},
where N stands for the set of all positive integers. To describe the
topology of X, partition N into infinitely many infinite disjoint classes,
{N;|ie N}. Define subsets of X as follows:

H,,={Q/i,01u{d/i,1/m)|m=k}U{A/n,1/m)|n=k,me N},

L,={0,01u{@/n,1/m)|n>k,me N,;,1<i<k}.
Let 9 be the topology of X generated by
{@/n,1/m)}|n, me N}YU{H;|%, ke NYU{L,|k € N}.

Then (X,q) is a C-compact Hausdorff but not compact space. Let
Y={Y, Y1, ¥, - - -} be a one-point compactification of a countable dis-
crete space {y,,¥,,---}. Consider A={(1/n,0;¥,)|ne N} in XXY.
It is easily proved that A is closed in XX Y. U={H,iu X{¥.}|n € N}
is a covering of A consisting of open sets of X X Y. Since there is no
finite number of elements of ¢J whose closures cover 4, X XY is not
C-compact.

Let us say that a space X has Property (x) if every continuous
function from X into a Hausdorff space is closed. Viglino proved that
each C-compact space has Property (x) and asked whether a Hausdorff
space having Property (x) is C-compact or not. Since the image of A
in Example 1 by projection X x Y—Y is not closed, X x Y in Example 1
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has not Property (x). Therefore, Property (x) of a topological space
is not productible.

Each C-compact subspace of a Hausdorff space is closed by Prop-
erty (x), and there exists a closed, not H-closed subspace in a C-compact
Hausdorff space (for instance, consider {(1/n,0)|ne N} in X in Ex-
ample 1). While a regularly closed subspace in a H-closed space is
H-closed [2], and a closed and open subspace of a C-compact space is
C-compact [7]. The following Example 2 shows that even a regularly
closed subspace of a C-compact space need not be minimal Hausdorff.

Example 2. There exist a C-compact Hausdorff space X and a
regularly closed subspace A of X such that A is not minimal Hausdorff.
Let X be a C-compact Hausdorff not compact space in Example 1.
Take ¢ and k in N with i<k, and let A=H,,=H,,U{(1/n,0)|n=k}.
Then A is regularly closed in X. Let U be a regularly open subset of
A containing (1/7,0). Then there exists k, in N such that (1/n,0)e U
for n=k, Thus for an open neighborhood H;; of (1/7,0) in A, there
is no regularly open set U with (1/¢,0) ¢ UCH;,. Therefore, A is not
semi-regular [5]. Since a space is minimal Hausdorff if and only if it
is H-closed and semi-regular [4], A is not minimal Hausdorff.

Viglino’s example of minimal Hausdorff but not C-compact space
is uncountable. We will show the existence of minimal Hausdorff but
not C-compact spaces for arbitrary infinite cardinality.

Example 3. There exists a countable minimal Hausdorff space
which is not C-compact. Let X={a;;, b;;, ¢;,a,b|?, 7 € N} be an example
due to Urysohn [6] which is minimal Hausdorff but not compact, see
[1] for details. In X, A={c;|tc N}is a closed set and

U={U;={ai;, byj, ¢;|f=n4,n:+1, - - -}|i € N}
is a covering of A consisting of open sets of X where n; are integers.
Since there is no finite number of elements of J whose closures cover
A, X is not C-compact.

Example 4. There exist minimal Housdorff spaces of arbitrary
infinite cardinality which are not C-compact. Let X be a countable
minimal Hausdorff but not C-compact space. Given an infinite cardi-
nal K, take Y to be any compact Hausdorff space of cardinal K (for
instance, the one-point compactification of a discrete space of K
points). Since X and Y are minimal Hausdorff, X XY is minimal
Hausdorff by Ikenaga [3] and is obviously of cardinal K. By Theorem
2, X XY is not C-compact.

After this manuscript had been written, the author found the
review of “C-compact spaces” written by Viglino himself in Zentral-
blatt fiir Mathematik und ihre Grenzgebiete, 185, 507 (1970). In his
review, Viglino reported that the product of a C-compact space with
a closed unit interval need not be C-compact.
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