230. Characterization of Separable Polynomials over a Commutative Ring

By Takasi Nagahara
Department of Mathematics, Okayama University, Okayama
(Comm. by Kenjiro Shoda, m. J. A., Dec. 12, 1970)

Throughout this paper B will mean a commutative ring with an identity element, and all ring extensions of B will be assumed commutative with identity element coinciding with the identity element of B. Moreover, X will be an indeterminate, and by $B[X]$ denote the ring of polynomials in X with coefficients in B where $b X=X b(b \in B)$. In [4], G. J. Janusz introduced the notion of separable polynomials over a commutative ring which is as follows: A polynomial $f(X) \in B[X]$ is called separable if it is a monic polynomial and if $B[X] /(f(X))$ is a separable B-algebra. ${ }^{1)}$ In [4, Theorem 2.2], it has been shown that under the assumption B has no proper idempotents, for a polynomial $f(X) \in B[X], f(X)$ is separable if and only if there is a strongly separable B-algebra ${ }^{2)} A$ with no proper idempotents which contains elements $a_{1}, a_{2}, \cdots, a_{n}$ such that $f(X)=\left(X-a_{1}\right)\left(X-a_{2}\right) \cdots\left(X-a_{n}\right)$ and for $i \neq j, a_{i}-a_{j}$ is inversible in A. In [3], B. L. Elkins proved that if a polynomial $f(X) \in B[X]$ is separable then $f^{\prime}(X+(f(X)))$ is an inversible element of $B[X] /(f(X))$, where $f^{\prime}(X)$ is the derivative of $f(X)$. Recently, in [5], the present author proved that for a polynomial $f(X) \in B[X]$, if there is a ring extension of B which contains elements a_{1}, \cdots, a_{n} such that $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$ and $\prod_{i \neq j}\left(a_{i}-a_{j}\right)$ is inversible in B then $f(X)$ is separable. The main purpose of this paper is to prove the following theorem.

Theorem 1. Let $f(X) \in B[X]$. Then the following conditions are equivalent.
(a) $f(X)$ is separable.
(b) $\quad f(X)$ is monic and $f^{\prime}(X+(f(X)))$ is an inversible element of $B[X] /(f(X))$.
(c) There is a ring extension of B which contains elements a_{1}, \cdots, a_{n} such that $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$ and $\prod_{i \neq j}\left(a_{i}-a_{j}\right)$ is inversible in B.

[^0]The theorem follows from the results of [3, Proposition 1.8], [5, Theorem], and the following theorem.

Theorem 2. Let $f(X) \in B[X]$. If $f(X)$ is monic and $f^{\prime}(X+(f(X)))$ is an inversible element of $B[X] /(f(X))$ then there is a Galois exten$\operatorname{sion}^{3} A$ of B with a Galois group \mathcal{G} which contains elements x_{1}, \cdots, x_{n} such that
(1) $f(X)=\left(X-x_{1}\right) \cdots\left(X-x_{n}\right)$ and $\prod_{i \neq j}\left(x_{i}-x_{j}\right)$ is inversible in B;
(2) $A=B\left[x_{1}, \cdots, x_{n}\right]$ and is a free B-module of rank n !;
(3) for every permutation σ on letters $1, \cdots, n, A$ has an automorphism σ^{*} mapping $g\left(x_{1}, \cdots, x_{n}\right)$ onto $g\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)$;
(4) \mathcal{G} is a group of order n ! which consists of the σ^{*};
(5) if A^{\prime} is a ring extension of B which contains elements a_{1}, \cdots, a_{n} such that $A^{\prime}=B\left[a_{1}, \cdots, a_{n}\right]$ and $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$ then A is B-algebra homomorphic to A^{\prime} under the map $g\left(x_{1}, \cdots, x_{n}\right) \rightarrow g\left(a_{1}, \cdots, a_{n}\right)$.

Proof. In case $\operatorname{deg} f(X) \leqq 1$, the theorem is trivial. Hence let $\operatorname{deg} f(X)>1$. Let X_{1} be an indeterminate, and set $x_{1}=X_{1}+\left(f\left(X_{1}\right)\right)$ $\in B\left[X_{1}\right] /\left(f\left(X_{1}\right)\right)$. Then $f(X)=\left(X-x_{1}\right) f_{2}(X)$ where $f_{2}(X) \in B\left[x_{1}\right][X]$. Clearly $f_{2}(X)$ is a monic polynomial. If $\operatorname{deg} f_{2}(X)>1$ then there is a ring extension $B\left[x_{1}\right]\left[x_{2}\right]$ of $B\left[x_{1}\right]$ such that $B\left[x_{1}\right]\left[x_{2}\right] \cong B\left[x_{1}\right][X] /\left(f_{2}(X)\right)$ $\left(x_{2} \leftrightarrow X+\left(f_{2}(X)\right)\right)$ and $f_{2}(X)=\left(X-x_{2}\right) f_{3}(X)$ where $f_{3}(X) \in B\left[x_{1}, x_{2}\right][X]$. Continuing this way, there is a ring extension A of B which contains elements $x_{1}, \cdots, x_{n-1}, x_{n}$ such that $A=B\left[x_{1}, \cdots, x_{n-1}\right]=B\left[x_{1}, \cdots, x_{n-1}, x_{n}\right]$, $f(X)=\left(X-x_{1}\right) f_{2}(X)=\cdots=\left(X-x_{1}\right) \cdots\left(X-x_{m}\right) f_{m+1}(X)=\left(X-x_{1}\right) \cdots$ $\left(X-x_{n}\right)$, and $B\left[x_{1}, \cdots, x_{m}\right]\left[x_{m+1}\right] \cong B\left[x_{1}, \cdots, x_{m}\right][X] /\left(f_{m+1}(X)\right)\left(x_{m+1} \leftrightarrow X\right.$ $+\left(f_{m+1}(X)\right)$) where $0 \leqq m<n$, and $f_{1}(X)=f(X)$. Clearly A is a free B-module of rank n !. Now, let A^{\prime} be a ring extension of B which contains elements a_{1}, \cdots, a_{n} such that $A^{\prime}=B\left[a_{1}, \cdots, a_{n}\right]$ and $f(X)$ $=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$. Set $A_{m}=B\left[x_{1}, \cdots, x_{m}\right], A_{m}^{\prime}=B\left[a_{1}, \cdots, a_{m}\right]$, and $A_{0}=A_{0}^{\prime}=B$. For a number $m<n$, assume that A_{m} is homomorphic to A_{m}^{\prime} under the map $\varphi: g\left(x_{1}, \cdots, x_{m}\right) \rightarrow g\left(a_{1}, \cdots, a_{m}\right)$. Then $A_{m}[X]$ is homomorphic to $A_{m}^{\prime}[X]$ under the map $g(X)=\sum_{i} g_{i}\left(x_{1}, \cdots, x_{m}\right) X^{i}$ $\rightarrow g^{\varphi}(X)=\sum_{i} g_{i}\left(a_{1}, \cdots, a_{m}\right) X^{i}$. Since $f(X)=\left(X-x_{1}\right) \cdots\left(X-x_{m}\right) f_{m+1}(X)$, it follows that $\left(X-a_{1}\right) \cdots\left(X-a_{m}\right) f_{m+1}^{\varphi}(X)=f^{\varphi}(X)=f(X)=\left(X-a_{1}\right)$ $\cdots\left(X-a_{m}\right)\left\{\left(X-a_{m_{+1}}\right) \cdots\left(X-a_{n}\right)\right\}\left(\in A^{\prime}[X]\right)$, so that $f_{m+1}^{\varphi}(X)=\left(X-a_{m+1}\right)$ $\cdots\left(X-a_{n}\right)$. Then $f_{m+1}^{\varphi}\left(a_{m+1}\right)=0$. Hence we have homomorphisms $A_{m+1} \rightarrow A_{m}[X] /\left(f_{m+1}(X)\right) \rightarrow A_{m}^{\prime}[X] /\left(f_{m+1}^{\varphi}(X)\right) \rightarrow A_{m}^{\prime}\left[a_{m+1}\right]=A_{m+1}^{\prime} \quad$ which are defined by maps $g\left(x_{1}, \cdots, x_{m}, x_{m+1}\right)=h\left(x_{m+1}\right) \rightarrow h(X)+\left(f_{m+1}(X)\right) \rightarrow h^{\varphi}(X)$ $+\left(f_{m+1}^{\varphi}(X)\right) \rightarrow h^{\varphi}\left(a_{m+1}\right)=g\left(a_{1}, \cdots, a_{m}, a_{m+1}\right)$. From this argument, it follows that $A=A_{n-1}$ is B-algebra homomorphic to $A^{\prime}=A_{n-1}^{\prime}$ under the map $g\left(x_{1}, \cdots, x_{n}\right) \rightarrow g\left(a_{1}, \cdots, a_{n}\right)$. Furthermore, this implies that for every permutation σ on letters $1, \cdots, n, A$ has an automorphism σ^{*}
3) See [2, Definition 1.4 (p. 20)].
mapping $g\left(x_{1}, \cdots, x_{n}\right)$ onto $g\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right)$. Let \mathcal{G} be the group consisting of the σ^{*}. Since $f(X)=\left(X-x_{1}\right) f_{2}(X)$, we have $f^{\prime}(X)=f_{2}(X)$ $+\left(X-x_{1}\right) f^{\prime}(X)$, and $f^{\prime}\left(x_{1}\right)=f_{2}\left(x_{1}\right)=\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)$ which is inversible in A by our assumption. Hence for every $j \neq 1, x_{1}-x_{j}$ is inversible in A. If $n>2$ then for every $i \neq j$ there exists an element σ^{*} in G such that $\sigma^{*}\left(x_{1}\right)=x_{i}$ and $\sigma^{*}\left(x_{j}\right)=x_{j}$; hence $\sigma^{*}\left(x_{1}-x_{j}\right)=x_{i}-x_{j}$ and is inversible in A. Now, let B^{\prime} be the fixring of G in A. For a non-zero $n-m<n$, assume that $B^{\prime} \subset A_{n-m}\left(\subset A=A_{n-1}\right)$. Then for $b^{\prime} \in B^{\prime}$, we may write $b^{\prime}=\sum_{s=0}^{m} c_{s}\left(x_{n-m}\right)^{s}$ where $c_{0}, \cdots, c_{m} \in A_{n-m-1}$. If $n-m \leqq t \leqq n$ then there exists an element σ^{*} in \mathcal{G} such that $\sigma^{*}\left(x_{n-m}\right)=x_{t}$ and $\sigma^{*}\left(x_{i}\right)=x_{i}$ for all $i<n-m$. Hence we have $\sum_{s=1}^{m} c_{s}\left(x_{t}\right)^{s}+c_{0}-b^{\prime}=0$ $(n-m \leqq t \leqq n)$. The determinant of the matrix $\left\|\left(x_{t}\right)^{s}\right\|(0 \leqq s \leqq m$, $n-m \leqq t \leqq n)$ is $\pm \prod_{n-m \leqq t<u \leqq n}\left(x_{t}-x_{u}\right)$ which is an inversible element of A; hence the matrix $\left\|\left(x_{t}\right)^{s}\right\|$ is inversible in the ring of $(m+1)$-square matrices with elements in A. Then we see that $c_{0}-b^{\prime}=0$, that is, $c_{0}=b^{\prime}$. Thus we obtain $B^{\prime} \subset A_{n-m-1}$. From this argument, it follows that $B^{\prime}=A_{0}=B$. Therefore, by [5, Lemma], A is a Galois extension of B with a Galois group \mathcal{G}, and $\prod_{i \neq j}\left(x_{i}-x_{j}\right)$ is an inversible element of B. This completes the proof.

The following corollary is a direct consequence of Theorem 1, Theorem 2 and its proof.

Corollary 1. Let $f(X)$ be a monic polynomial in $B[X]$. Then there is a ring extension of B which contains elements a_{1}, \cdots, a_{n} such that $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$. In this case, $f(X)$ is separable if and only if $\prod_{i \neq j}\left(a_{i}-a_{j}\right)$ is inversible in B.

The following corollary contains the result of [3, Corollary 2.4].
Corollary 2. Let $X^{n}-b \in B[X]$ and $n>1$. Then, $X^{n}-b$ is separable if and only if $n \cdot 1$ and b are inversible elements of B.

Proof. We set $B[x]=B[X] /\left(X^{n}-b\right)$ where $x=X+\left(X^{n}-b\right)$. By Theorem 1, $X^{n}-b$ is separable if and only if $n x^{n-1}$ is inversible in $B[x]$. Noting $x^{n}=b, n x^{n-1}$ is inversible in $B[x]$ if and only if $n \cdot 1$ and b are inversible in $B[x]$. Since $B[x]$ is a free B-module of finite rank, $n \cdot 1$ and b are inversible in $B[x]$ if and only if these are inversible in B.

The following corollary contains the result of [5, Corollary 4].
Corollary 3. Let B be an algebra over a prime field $G F(p)(p \neq 0)$. Let $f(X)=X^{p m}+b_{m-1} X^{p(m-1)}+\cdots+b_{1} X^{p}+b X^{n}+c \in B[X]$ where $m \geqq 1$ and $p>n$. Then
(1) if $n=0$ then $f(X)$ is not separable.
(2) In case $n=1, f(X)$ is separable if and only if b is inversible in B.
(3) In case $n>1, f(X)$ is separable if and only if b and c are inversible in B.

Proof. (1) and (2) are direct consequences of Theorem 1. Let $n>1$ and set $B[x]=B[X] /(f(X))$ where $x=X+(f(X))$. By Theorem 1, $f(X)$ is separable if and only if $f^{\prime}(x)=n b x^{n-1}$ is inversible in $B[x]$, which is equivalent to that b and x are inversible in $B[x]$. Let x be inversible in $B[x]$. Then we may write $x^{-1}=c_{p m-1} x^{p m-1}+\cdots+c_{1} x+c_{0}$. From $f(x)=0$, we have $0=c_{p m-1} f(x)-\left(x x^{-1}-1\right)=\left(-c_{p m-2}\right) \cdot x^{p m-1}$ $+\cdots+\left(-c_{0}\right) x+c_{p m-1} c+1$. Since $\left\{x^{p m-1}, \cdots, x, 1\right\}$ is a free B-basis of $B[x]$, it follows that $c_{p m-1} c+1=0$, and so, c is inversible in $B[x]$. Conversely, if c is inversible in $B[x]$ then, from $f(x)=0, x$ is inversible in $B[x]$. Hence $f(X)$ is separable if and only if b and c are inversible in $B[x]$ which is equivalent to that b and c are inversible in B.

Remark. As another characterization of the separable polynomials over B, we have the following information which contains the result of [4, Theorem 2.2].

For a monic polynomial $f(X)$ in $B[X]$, the following conditions are equivalent.
(a) $f(X)$ is separable.
(b) There is a Galois extension of B which contains elements a_{1}, \cdots, a_{n} such that $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{n}\right)$ and $\prod_{i \neq j}\left(a_{i}-a_{j}\right)$ is inversible in B.
(c) For each maximal ideal M of $B, f(X)$ is separable when viewed as a polynomial over the local ring B_{M}.
(d) For each maximal ideal M of B, the polynomial obtained from $f(X)$ by reducing the coefficients modulo M has no repeated roots in an algebraic closure of B / M.
(e) Let t denote the trace map of the free B-module $B[X] /(f(X))$ and let x denote the coset of X modulo $(f(X))$. Then the determinant of the matrix $\left\|t\left(x^{i} x^{j}\right)\right\|(0 \leqq i, j<\operatorname{deg} f(X))$ is an inversible element of B.

The equivalence of (a) and (b) is a direct consequence of Theorem 1 and Theorem 2. The others will be proved later in a paper: On separable polynomials over a commutative ring II, Math. J. of Okayama Univ., 15 (to appear).

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring. Trans. Amer. Math. Soc., 97, 367-409 (1960).
[2] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and Galois cohomology of commutative rings. Mem. Amer. Math. Soc., No. 52, 1533 (1965).
[3] B. L. Elkins: Characterization of separable ideals. Pacific J. Math., 34,

45-49 (1970).
[4] G. J. Janusz: Separable algebras over commutative rings. Trans. Amer. Math. Soc., 122, 461-479 (1966).
[5] T. Nagahara: On separable polynomials over a commutative ring. Math. J. Okayama Univ., 14 (to appear).

[^0]: 1) A commutative B-algebra S is called separable if it is a projective $\left(S \otimes_{B} S\right)$-module (cf. [1, p. 369]).
 2) A B-algebra S is called strongly separable if it is finitely generated. projective, and separable over B.
