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13. Some Radii Associated with Polyharmonic Equations

By Shir60GAWA, *) Takashi KAYANO, **) and Ichiz5 YOTSUYA***)

(Comm. by Kinjir6 KUNUI, M. 1. A., Jan. 12, 1971)

Introduction. G. P61ya and G. Szeg5 [2] defined the inner radius
of a bounded domain by a conformal correspondence from the domain
to a disk and showed that it can be also given by the Green’s function
of the domain relative to the Laplace’s equation z/u=0. In addition,
they defined the biharmonic inner radius of a domain by the Green’s
function of the domain concerning the biharmonic equation A2u=0.
Using the results, they calculated the ordinary inner and biharmonic
inner radii of a nearly circular domain. The aim of this paper is to
extend the above results. In the first place, we obtain the Green’s
function of a disk relative to the n-harmonic equation ,nu= 0 and define
the n-harmonic inner radius of a domain. On the base of the results,
we compute the n-harmonic inner radius of a nearly circular domain
and it is remarkable that it is monotonously decreasing with respect
to integer n.

1. Inner radii associated with polyharmonic equations.
We use the following notations hereafter. Let D be a bounded

domain, C the boundary of D, a an inner point of D, z the variabie
point in D and r the distance from a to z.

Definition 1o The function satisfying following two conditions
is called the Green’s function of D with the pole a relative to the n-
harmonic equation Au=0.

(1) The function has in a neighborhood of a the form
2(n-1) log r+ h(z),

where the function h(z) satisfies the equation Jnu:O in D.
(2) On the boundary C, the unction and all its normal derivatives

of order _< n-- 1 vanish.
Theorem 1. If D is the disk ]zlR in the complex z-plane, the

Green’s function Gn(a, z) of D with the pole a relative to the equation
Anu--O i8 a8 follows,

R(z--a).Gn(a, z)-Iz-al2(-1) log
R2--dz
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Proof. We rewrite the unction G(a, z) as

Gn(a, z)--[z--a[-) logl z--a[--[z--al-) log [z--a[
R

Then the part of the summation of the right hand side is obviously
n-harmonic. By the act that if the function u is harmonic, the func-
tion r(n-’u is n-harmonic, the second term
the former equality is also n-harmonic. So our function satisfies the
condition (1) of the Green’s unction. Now, we put

hen is equal to 1 on the boundary lzI-R, and we can rewrite the
function G(a, ) as

=1

And if f(z) denotes the following function

lo z+ (1- z),
f(1) and f(1), for such an integer as 1N N-- 1, vanish. Conse-
quently, we can verify the unetion G(, ) satisfies the condition ()
of he Green’s function. ha establishes the theorem.

Given a domain D and an inner oint a of D, G. P61ya and
G. Seg6 [2] defined the inner radius of D with respect to he oint
a as follows; he interior of D being mapped eonformally onto the
interior o a circle so that the oint corresponds to the center of the
circle and linear magnification at the point e is equal to 1, the radius
of the circle so obtained is f. When the Green’s function
D with the ole a relative to the equation A--0 is

G(a, )= log f-- h(),
they showed that the inner radius f is determined by

log f--
hey also defined the biharmonie inner radius associated with the
biharmonie equation A--0 as follows; Denoted the Green’s function
of D with the pole a relative to the biharmonie equation A--0 by

f log + h()
and utting

h(a),

the positive quantity is called the biharmonie inner radius of D
with respee to the oin a.

Now we define the -harmonie inner radius of a domain D associ-

ated with the -harmonie equation A 0.
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Definition 2. If the Green’s function of a domain D with the pole
a relative to the equation z/u-0 is

r(-) log r+ h(z),
and we put

log r, h(a),
-1)

’ :lhn(a)] (n>_2),
2(n-- 1)

we call the positive quantity r, the n-harmonic inner radius of the
domain D with respect to the point a.

Remark. When the domain D is the disk ]zlR in the complex
z-plane, it is well known that the Green’s function of D with the pole a
relative to the equation z/u-0 is

log
R--dz

and the Green’s function relative to the equation lu=0 has been given
by G. PSlya and G. Szeg5 as ollows,

R(z a) 1 , Rz-al log
R

Using the preceding two Green’s functions and the Green’s unction
given in Theorem 1, we can obtain the ordinary inner radius, the
biharmonic inner radius and the n-harmonic inner radius for an arbi-
trary integer n (n>__ 3) of the disk zlR with respect to the point a,
which are the same value

R
2. Inner radii of a nearly circular domain.
In this section, we treat the radii of a nearly circular domain

defined in the former section.
Definition :. Let

( 1 r= 1 + p(9)
be the equation of .the boundary of a domain in polar coordinate r and, where the periodic function p() represents the infinitesimal varia-
tion of the unit circle. We call the domain bounded by (1) the nearly
circular domain.

We consider the Fourier series

( 2 ) p()-ao+ 2 (a cos k9 + b sin kg),

where each coefficient a or b is the infinitesimal o the first order.
Terms of higher infinitesimal than the second order are neglected in
all the discussions of this section.

Lemma. Neglecting terms of higher than the first order, the
centroid c=lc e of the nearly circular domain r <1+ p(9) is
( 3 c 2(a + ibm).
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This lemma was given by G. PSlya and G. Szeg5 [2], and they
obtained the ordinary inner radius r and the biharmonic inner radius s
of the nearly circular domain with respect to the centroid c as follows,

r-- 1 + a0 + a+ b-- (2k+ 1)(a + b),
(4)

s-- 1 + a0 + al + b-- , (4k-- 1)(a + b).

As an extension of (4), we prove the following theorem.
Theorem 2. For an arbitrary positive integer n, the n-harmonic

inner radius r,n of the nearly circular domain r1+p() with respect
to the centroid c is

( 5 ) re,-- 1 + ao+ a+ b-- , {2nk-- (2n-- 3)} (a + b).

Consequently, rc,, decreases monotonously with respect to n.
Proof. We seek the Green’s function G(c, z) of the nearly circular

domain with the pole c relative to the equation A’u-0 in the form
r2(n-k-1)

Gn(c z)--r’(n-) log r’-- 1

p(r, )= , r+(A; cos kff +B sin k),
=0 y=0

q(r, )-- r +;(A/ cos k(? + Bf sin
=o

where r’ is the distance from the centroid c=l c le to the point z--re,
the coefficients of p(r, (2) are of the first order and those of q(r, ?) of
the second order. The n-harmonic inner radius rc, is determined by

c,n (--1)n --p(ICl, ’) q([ c ],
2(n-- 1) 2(n-- 1)

1 --(--1)n{Aoo+(Alocos y+B0 sin y)lcl+Ag0},
2(n-l)

and so we have

(6) r -1-(-1){Aoo+(AocOS,+Blosin’)lcl+Ago}-2n-3 Ao.,n 2

Setting

2-r’ and Fn()-ln_
2

log 2-- =i -we can rewrite as
Gn(c, z)- rn() p(r, )- q(r, ).

Owing to the equality

,n-1 {__ k--1-- (’ 1)-1’

We obtain the ollowing equality
d Fn(2) (n- 1)Fn_(2).(7)
d2
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On the boundary r-1+ P(9) we have
FI()--- log r’ ={p(9)--[ c[ cos

l{p()_ el cos (-)} /lcl sin ((?- T)
2

(8)
F.(2)-r’ logr’ 1 (r,_l)_{p(q)_[c] cos ((?-)},

F,(2)- 0, 3 =< a;
that is, when a is larger than 2, F(2) is negligible. Let v be the nor-
mal of the boundary of the nearly circular domain. Then the condition-----F,-0 on the boundary can be replaced by

Or
F,-0. On account

of (7) and (8), we have

F-- (n-- 1) F(2) --rn-

Or,_-----; F,- (n-- 1) F(2) -- +(n--1)(n--2)F(2) 2 - ,y,2

So the boundary conditions are

3rp(1, )+p().Or+ p(1, )+
3r+

q(1, )-0 0an-3,

3n-2 3n-1 n-2p(1, ) + P()n- p(1, )+ Orn_
q(1, )

(9)
=2-(n--1) {p()--]c] cos (-- y)},

3n -1 3n 3n-1

Or
p(1, ) + p() Or"

p(, )+ or,_ q(1, )

=2n-(n-- 1) {p()--[c] cos (-- y)}
+ 2"-(n 1) {2(2n-- 3) + (n-- 1)(n-- 2)}{p() --] c] cos (--
+ 2"-(n 1) [c[ sin (-- y).

The first order terms yield

OrP(1, )--0 Oan--2,
(10) 0_1

Noting that, by the first condition of (10), p(r, ) has the factor
(r- 1)- and in view of lemma we have

Icl cos (-)=2(a cos +bl bin ),
we obtain the equality

(11) p(r, 9)--(r- 1)- tao + 2

__
r(a cos k9 + b sin kg);

in particular
(12) A0o= (- 1)-a0 and Alo=Bo=0.
We consider the second order terms. The mean value of the function

n--1

q(r, ) with respect to 9 is equal to . rAg. By the first equation
j=0
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of (9) and that of (10) we have

3r--- q(1, )-- 0 Oa<=n--3,

so that it must be the form
--1

(13) 2yAgJ_ (2_ 1)n-2(A,2 + B),

where A and B are constants. Comparing the constant coefficients of
q(r, ) and (13), we obtain
(14) A0-- (-- 1)n-2B.
Taking now the mean values of second order terms we find

A + B-- --(n--l){a/2

__
(a + b)

(n + 2)A + (n-2)B
(2n 3) (n --1)(n+ 2)} ta+2 __. (a+ b)}(2

--8n k(a+ b) + 4(a+ b),

and so we have

(15)
B-- --(a+ b) + 2n k(a+ b)

1__. (2n--3)[a] +2 . (a+ b)
2

By virtue of (6), (12), (14) and (15) we find

rc,-- 1 + ao + a[+ b-- {2nk- (2n-- 3)}(a+ b).

This is the equality (5) of the theorem.
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