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1o Introduction. The n-sphere S is the set of vectors in
Euclidean space R/ having unit length. An even map f from S to a
topological space X is a continuous map preserving base points which
satisfies f(--x)-f(x) for any x e S.

In this note we deal with the general problem of representing
homotopy classes by even maps from spheres to spheres.

To state the results, we denote by KO* the functor in the real K-
theory [2]. Suppose k--0, 1, 2 or 4mod 8, then we have

Theorem 1.1. An element of the homotopy group zr+(X) of a

finite CW-complex X which induces non-zero homomorphism *"KOn(X)-K’On(Sn+) (Z Or Z) can not be represented by any even
map in the following cases"

i) n_--2mod4 if k=_l rood 8,
ii) n_= 0 or 3 mod 4 if k_-__ 2 mod 8,
iii) n 0 mod 2 if k =_ 0 mod 4.
By the methods of tI. Toda and J. F. Adams, we have a family of

the elements/, o n+(S) i k-8s/ 1 and n>_3. We note that /0,
is the (n-2)-fold suspension 7-S-b72, where 72 is the homotopy class
of the Hopf map from S to S.

Corollary 1.2. Suppose k- 8s / 1 and n_ 3, then
i) [, can not be represented by any even map if n2mod 4,
ii) f,7+ can not be represented by any even map if n=_O or

3 mod 4.
By Theorem 2 of [8], 7- can not be represented by any polynomial

map from S to S- if n is a power of 2. Since a form of even degree
is an even map, Corollary 1.2 partially generalizes the above result of
R. Wood.

We denote by the homotopy class of the identity of S and by
the generator of the 2-component of /3(S)Z2 for n_5.

Theorem 1.3. i) Suppose n/k=_2mod4, then+ and c7+
are represented by even maps for any er Zn+(S) respectively.

ii) Suppose n+ k--1 rood 4 and n_ k+ 5 and let er zr+(Sn) be of
order 2, then we have the following.

a) Any element of the Toda bracket (, 2+, n+) is represented
by an even map.
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b) Assume that / is represented by an even map, then any
element of the Toda bracket {a, 2/,/} is represented by an even
map.

Corollary 1.4. Suppose k=Ss + 1, then
i) /, and t,V/ are represented by even maps respectively if

n2mod4 and n>_k+3,
ii) /,]/ is represented by an even map if n=_l mod 4 and n>_3.
I do not know whether an element in the above can be represented

by a quadratic form (see Corollary 1.10 of [3]).
2. Proof of Theorem 1.1. Consider the following cofibering

sequence"

(2.1) ;S/- P(n+k P(n+k+l)
p

S//1

where P(n) is the real projective space, =" S--P(n) the

identification map, i=i" P(n)-oP(n+l) the inclusion and p

=p+" P(n+ 1)--Sn/=P(n+ 1)/P(n) the collapsing map.

Lemma 2.1. If f" Sn/-.X is an even map and if it induces a
non-trivial homomorphism f*" K’On(X)-Kn(Sn+), then i*" KO(P(n
+ k+ 1))--KO(P(n +k)) is not onto.

Proof. From the first assumption there exists a map f" P(n+ k)
-X such that f=f. By the relation f*=*f* and by the second
assumption, * is non-trivial. The following exact sequence induced
by (2.1) leads us to the assertion"

----KO(P(n/ k)) .KO(P(n+ k+ 1))
(2.2) p,

KOn(Sn++’)
The above lemma and the following one complete the proof of

Theorem 1.1 in case of i) and ii).
Lemma 2.2. Suppose k=_ 1 or 2 rood 8, then i* KO(P(n+ k+ 1))

--KO(P(n+ k)) is onto in the following cases"

i) n 2 mod 4 if k-- 1 rood 8,
ii) n-- 0 or 3 rood 4 if k--_ 2 mod 8.
This lemma is proved by use of Theorem 1 of [4] and (2.2).
The assertion of Theorem 1.1 in case of iii) is obvious since

KOn(p(n/ k)) is finite by Theorem I of [4] if n+ k is even.
Thus the proof of Theorem 1.1 is completed.
3. A family of the elements/, and the proof of Corollary 1.2.

We define an element/’ e /(S) as ollows"
(3.1) /=] and/ e {a’, 2ts+4, ]s+4} for s_ 1,

Put
(3.2)
(3.3)

where ’ is the element defined at (5.7) of [5].

Sn-5s,n Os,

s,n--Sn-5ts and/-S[.
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On the other hand we can define an element fi e 8/,(S3) as follows"
(3.4) fi:73, fil /3 (see p 56 of [6]), fi:/23 (see p. 136 of [6]) and

/8-1, 2s_4, 8as8_4} for s

_
3,

where a is the generator of the 2-component of
for n_9.

Put
Sn-fi’ and fi- Sfi.(3.5)

By Proposition 3.2. (a) and 7.1 of [1], /fi mod Ker da, where
da is the homomorphism such that d(a)-a*" KOn(S)-KOn(Sn/s/’)
for a e /s/(Sn).

We put
(3.6) l,-fi, for n=3 and 4.

Now we are ready for proving Corollary 1.2. It is obtained from
Theorem 1.1 in case of i) and ii) by using the Bott periodicity theorem
and Theorem 1.2 of [1].

4. Proof of Theorem 1.:. For a finite CW-complex X whose
dimension is less than 2n--2, we denote by 7On(X) the n-th cohomotopy
group of X.

From the Hopf-Eilenberg classification theorem and from Theorem
4 of [7], we have

if n is odd,
(4.1) u(P(n))={p} Z if n is even,

_12n if n is odd,
(4.2) pu

0 if n is even,
where the same symbol is used for a map and its homotopy class.

Lemma 4.1. Let e 7:(P(n+l)) and 7P+1 e un(P(n+2)) be
extensions of Pn and 7P+1 for even n_4 respectively, then we have
the following.

i) If n0mod4, then
ii) If n2 mod 4, then

a) is of order 2 and /-7,
b) 7P/ is of order 2 and

Proof. Consider the following exact sequence". i.
(S)( (P(n)).-: n(p(n+l))P*un(S+)

S.
u-(P(n)), u-(P(n+ 1))(4.3)

-1(S+ 1) u-(P(n))(
It follows from (4.1), (4.2), (4.3) and Corollary 1.2. i) for k---1 that
r’(P(n-t 1)) is generated by 15n and nPn+ and it is isomorphic to Z or

Z2/Z for even n_ 4.
By use of (11.16) of [6], (P(n + 1)) z 7:(P(n + 1)/P(n- 2))

e/) if n(K/S/1) if n=_2mod4 and u(P(n+I))un(KJ,,_,
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0mod 4, where K=S’- U-,-,,,,,-, e and i" S"-K is the inclusion.
Clearly (K)--{p}Z, where p" KS is the collapsing map.

So we have the first of ii). a).
We denote by i" KL=K U,,-, e+ the inclusion and by p" L

S+ the collapsing map. In the cofibering exact sequence

(S ’),0
(iln--1)$

(K) (L) +

there exists an element , e u=(L) such that ,i--p,. By the definition
of the Toda bracket and by Proposition 1.4, 1.8 and 1.2. i) of [6],

2{Sp,, S(i,n_l), P} S({2, p,, i,n_,}p) S({2tn, P,, i,}p) S(nP).
This leads us to i).

When n2 rood 4, can be represented by a quadratic form (see
p. 140 141 of [7]) and so by an even map. From this the second of
ii). a) holds.

(4.3) and ii). a) lead us to the first of ii). b).
By (4.1), (4.2), (4.3) and the second of ii). a), we have

(4.4) (P(n+ 1))-- 0 if n 3 rood 4.
By i) S(nPn+i) 2Sn 2{Sp, S, P+I} S({2tn, Pn, n}Pn+i)" So

we have, by (4.4),
(4.5) {2, Pn, }- if n 0 rood 4.

By Proposition 1.2. iii) and 1.4 of [6] and by (4.2), (4.4) and
(4.5), S(nPn+n+)--{S(nPn+), Sn+, Pn+}Sn+={n+, 2tn+,
=fl+{2+, p+, n+}--+ for n2 rood 4. This leads us to the second
of ii). b).

Thus the proo of the lemma is completed.
Now we shall prove Theorem 1.3.
i) of Theorem 1.3 is a direct consequence of ii) of Lemma 4.1.
By Proposition 1.3 and 1.2. i) of [6] and by ii). a) of Lemma 4.1,

S{a, 2+, Vn+,} {Sa, 2++,, V,++,} {Sa, 2+,+,, +,+,+,+} {Sa,
2t++,$++}S++. This is contained in +(SP(n+k+2))Sn++
=S(u(P(n+ k+2))u++) sincenk+5. So we have ii). a) of Theorem
1.3.

The proof of ii). b) of Theorem 1.3 is similar to the above and we
omit it.

5. Proof of Corollary 1.4. ii) of the corollary is obvious.
We put k=Ss-1 and a-a, in Theorem 1.3. ii). If nk+5

=(8s+1)+3, then we have, by (3.1) and (3.3), ff,e {a,,2t+,fl+}
and ff,fln++ e {a,,2+, +} since a,,+=0 by Lemma 5.1. i) of
[5]. Consequently i) of Corollary 1.4 holds.

By use of Theorem 1.3 we have the following for sufficiently large n.

xample 5.1. i) If k=8s--1 and n3 mod 4, then p,,+ and
p,+ which are the generators of the J-images (see (5.17) of [5]) are
represented by even maps respectively (see Corollary 1.10 of [3]).
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ii) If n----3 mod4, then en e {, 2tn+6, ]n+6}, /In$ e {0", 2+14, ]n+14}
and *y+6 e {a,2n+, 2/14} (see ii) of Theorem 2.1 of [5]) are repre-
sented by even maps respectively.
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