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1. Even Maps from Spheres to Spheres

By Juno MUKAI
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Jan. 12, 1971)

1. Introduction. The n-sphere S” is the set of vectors in
Euclidean space R**! having unit length. An even map f from S* toa
topological space X is a continuous map preserving base points which
satisfies f(—x)= f(x) for any x ¢ S".

In this note we deal with the general problem of representing
homotopy classes by even maps from spheres to spheres.

To state the results, we denote by KO* the functor in the real K-
theory [2]. Suppose £k=0,1,2 or 4mod 8, then we have

Theorem 1.1. An element a of the homotopy group m, . (X) of a
finite CW-complex X which induces non-zero homomorphism a*:
KOX)—K0™(S"**) (=Z or Z,) can not be represented by any even
map in the following cases:

i) n=2mod4 if k=1mod8g,

ii) n=0or 83mod4 if k=2mod38,

jii) n=0mod2 if k=0mod 4.

By the methods of H. Toda and J. F. Adams, we have a family of
the elements p, , of 7,,,(S") if k=8s+1 and n>3. We note that g, ,
is the (n —2)-fold suspension 7,=S""%;,, where 7, is the homotopy class
of the Hopf map from S°® to S

Corollary 1.2. Suppose k=8s+1 and n>3, then

1) p,,. con not be represented by any even map if n£2mod 4,

i) My nfusr can not be represented by any even map if n=0 or
3 mod 4.

By Theorem 2 of [8], ,_, can not be represented by any polynomial
map from S* to S~ if n is a power of 2. Since a form of even degree
is an even map, Corollary 1.2 partially generalizes the above result of
R. Wood.

We denote by ¢, the homotopy class of the identity of S* and by v,
the generator of the 2-component of z,,,(S")=Z,, for n>5.

Theorem 1.3. i) Suppose n+k=2mod4, then an,., and ans
are represented by even maps for any a € w,,x(S™) respectively.

i) Suppose n+k=1mod4 and n>k+5 and let a € &, ,(S™) be of
order 2, then we have the following.

a) Any element of the Toda bracket {a,2¢, i, Ny, 1} 1S Tepresented
by an even map.
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b) Assume that ay,,, is represented by an even map, then any
element of the Toda bracket {a,2¢, .1, 72,1} s represented by an even
map.

Corollary 1.4. Suppose k=8s+1, then

1) ponand g ). are represented by even maps respectively if
n=2mod 4 and n>k+3,

i) pyn¥n.r ts represented by an even map if n=1mod 4 and n>3.

I do not know whether an element in the above can be represented
by a quadratic form (see Corollary 1.10 of [3]).

2. Proof of Theorem 1.1. Consider the following cofibering
sequence :

@.1) ST Pt k) P(n+ ot 1)—s S s
where P(n) is the real projective space, w=mn,: S*—P(n) the
identification map, i=i,: PM)—Pn+1) the inclusion and p
=Pp.1: P+1)—-8S*'=P(n+1)/P(n) the collapsing map.

Lemma 2.1. If f:8"**>X is an even map and if it iniuces a
non-trivial homomorphism f*: K’T)"(X)—»Khé"(S"”‘), then i*: KO"(P(n
+k+1)—KO*(P(n+k)) is not onto.

Proof. From the first assumption there exists a map f: P(n+k)
—X such that f=fr. By the relation f*=z*f* and by the second
assumption, #* is non-trivial. The following exact sequence induced
by (2.1) leads us to the assertion:

e KOS RO P+ b)) <o O (P(n + k +1))

ﬁ_f{)n(Sn+k+l)<___ ...

The above lemma and the following one complete the proof of
Theorem 1.1 in case of i) and ii).

Lemma 2.2. Suppose k=1 or 2mod 8, then i*: KO*(P(n+k+1))
—KO"(P(n+k)) is onto in the following cases:

i) n#2mod4 if k=1mod 8,

ii) »=0 or 3mod 4 if k=2mod 8.

This lemma is proved by use of Theorem 1 of [4] and (2.2).

The assertion of Theorem 1.1 in case of iii) is obvious since
KO"(P(n+k)) is finite by Theorem 1 of [4] if n+ k is even.

Thus the proof of Theorem 1.1 is completed.

3. A family of the elements (, , and the proof of Corollary 1.2.
We define an element p; € 7y, ((S°) as follows:
B p=n; and pg e {a;, 2,4 Nsora} fOr 81,

where o is the element defined at (5.7) of [5].

2.2)

Put
B.2) a,,=8"'a,
(8.3)  py,=8""u and p,=8"ps;.
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On the other hand we can define an element fi; € 7y, ,(S°) as follows :

3.4 po=mn,, 1=, (see p. 56 of [6]), f,= [, (see p. 136 of [6]) and
By { s, 2554, 80,1} for s=3,
where ¢, s the generator of the 2-component of 7, (S")=Z,,
for n>9.

Put

3.5)  p,,=8S""u; and p,=S>pu,.

By Proposition 3.2. (a) and 7.1 of [1], p,=z, mod Ker dg, where
dz is the homomorphism such that dz(a)=a*: KO™(S")—EK0O"(S+5+1)
for a € 7, 5,:(S™.

We put
(3.6) pyn=_/[sn for n=3 and 4.

Now we are ready for proving Corollary 1.2. It is obtained from
Theorem 1.1 in case of i) and ii) by using the Bott periodicity theorem
and Theorem 1.2 of [1].

4. Proof of Theorem 1.3. For a finite CW-complex X whose
dimension is less than 2n—2, we denote by z™(X) the n-th cohomotopy
group of X.

From the Hopf-Eilenberg classification theorem and from Theorem
4 of [7], we have

n Z if nis odd,
@D z"(Pm)={p.}= {Zz if nis even,
2¢, if nis odd,
4.2) pum,= {0 if n is even,
where the same symbol is used for a map and its homotopy class.

Lemma 4.1. Let $,cn"(P(n+1)) and 79,0, € 7 (Pn+2)) be
extensions of p, and 7,P.,, for even n>4 respectively, then we have
the following.

i) If n=0mod 4, then 2p,=1,Dy -
ii) If n=2mod 4, then
a) P, is of order 2 and P,y =N,
D)  DuDny1 S Of order 2 and P,Pp 1 TTn =23
Proof. Consider the following exact sequence:
(M) (P(0) 7 (P(n + 1) L (S )
4.3) S an(Pm))— " (P(n + 1)
—— Y (St &ircn—z(P(,n))(____ ...
It follows from (4.1),(4.2),(4.3) and Corollary 1.2. i) for k=1 that
z"(P(n+1)) is generated by p, and 9,0,,, and it is isomorphic to Z, or
Z,+Z, for even n>4.

By use of (11.16) of [6], n"(P(n+ 1) = z™(P(n +1)/P(n — 2))
~a"(K\V S if n=2mod4 and n"(P(n+1)=~z"(K\U;,,_, ") if n
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=0mod 4, where K=8"""'{_J,,,,_, " and ¢,: S"'—K is the inclusion.

Clearly n"(K)={p,}=~Z,, where p,: K—S" is the collapsing map.
So we have the first of ii). a).

We denote by 4,: K-L=KJ,,,_,e"*" the inclusion and by p,: L
—S**! the collapsing map. In the cofibering exact sequence

(19n-1)* i ¥
0 7™(K) (L) <——n"(S"*Y),
there exists an element %, € 7*(L) such that $,2,=p,. By the definition
of the Toda bracket and by Proposition 1.4, 1.3 and 1.2. i) of [6], 257,
= Z{Spl’ S(ilnn—l)’ P.} = S{2¢4, 1) i17}n-1}pz) = S({2¢, 01y il}y]npz) = S(r)npz).
This leads us to i).

When n=2mod 4, 7, can be represented by a quadratic form (see
p. 140 ~141 of [7]) and so by an even map. From this the second of
ii). a) holds.

(4.8) and ii). a) lead us to the first of ii). b).

By (4.1),(4.2), (4.3) and the second of ii). a), we have
4.4 7 (P(n+1))=01if n=3mod4.

By i) S(nnpnn) = 2Sﬁn = Z{Spn’ Sﬂn) pn+1} = S({zln, DPrs ﬂn}pnn)' So
we have, by (4.4),

(4.5) {24, Dy» To}=my tf n=0mod 4.

By Proposition 1.2. iii) and 1.4 of [6] and by (4.2),(4.4) and
4.5), S("}npnnnnw):{S(vnpnn)’ Sﬂnu, pn+2}snn+2={7]n+1’ 2042 pn+2}Sﬂn+2
=Nns1l2Cn12> Prszs Tnsa} =05, for n=2mod 4. This leads us to the second
of ii). b).

Thus the proof of the lemma is completed.

Now we shall prove Theorem 1.3.

i) of Theorem 1.3 is a direct consequence of ii) of Lemma 4.1.

By Proposition 1.8 and 1.2. i) of [6] and by ii). a) of Lemma 4.1,
S{a, 25n+ky 7]n+k} = {Sa, 2‘n+lc+1’ 7]n+k+1}: {Sa" 2‘n+k+u f’n+k+175n+k+2} = {SO(,
2nsists Prsks1STasnsee This is contained in z"**(SP(m+k+2)Smy .1+,
=S (PM+k+2)7, .., since n>k+5. So we have ii). a) of Theorem
1.3.

The proof of ii). b) of Theorem 1.3 is similar to the above and we
omit it.

5. Proof of Corollary 1.4. ii) of the corollary is obvious.

We put k=8s—1 and a=a,, in Theorem 1.3.ii). If n>k+5
=(8s+1)+38, then we have, by (3.1) and (3.3), £, € {¥snr2tnits Nusi}
and g nsier € {As,nr 201k M40} SiNCE A 1Vy, ;=0 by Lemma 5.1. i) of
[5]. Consequently i) of Corollary 1.4 holds.

By use of Theorem 1.3 we have the following for sufficiently large n.

Example 5.1. i) If k=8s—1 and n=3mod 4, then o, Nn.x aNd
Qo7 w Which are the generators of the J-images (see (5.17) of [5]) are
represented by even maps respectively (see Corollary 1.10 of [3]).
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i) If n=3mod4, then e, {V}, 204 6 Nuiehr V¥ €{0%, 20 100 Nrsra}

and DENn 416 € {05, 200 1140 93 110} (Se€ i) of Theorem 2.1 of [5]) are repre-
sented by even maps respectively.
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