37. Dynamical System with Ergodic Partitions

By Yoshitaka Yokoi

(Comm. by Kinjirô KUNUGI, M. J. A., Feb. 12, 1971)

Introduction. In this paper we give a sufficient condition for a dynamical system on a compact metric Lebesque space to be ergodic. The following argument is essentially described in the work of Sinai [2]. The difference is the consideration of "measurable set" in place of "k-dimensional submanifold".

0. Notations. We denote by (M, \mathfrak{B}, μ) a Lebesque space with σ -algebra \mathfrak{B} and a measure μ ; $\mu(M)=I$. We suppose that M is a compact metric space with distance d(,).

 (M, T, μ) is a dynamical system, i.e., T is an automorphism of (M, \mathfrak{B}, μ) .

 \mathfrak{N} denotes the trivial subalgebra consisting of sets of measure zero or of measure one, and $\mathfrak{S}(A_{\alpha})$ the σ -algebra generated by the system of measurable sets $\{A_{\alpha}\}$.

 $\mathfrak{S}|_A$ means the restriction of a σ -subalgebra \mathfrak{S} to a measurable set A.

1. Expansive partitions and contractive partitions.

Definition 1.1. Let $\xi = \{C_{\xi}\}$ be a partition of M into measurable sets $\{C_{\xi}\}$. ξ is called to be *T*-expansive (*T*-contractive), if for two points $x, y \in M$ which belong to the same element C_{ξ} of $\xi \ d(T^n x, T^n y)$ $(d(T^{-n}x, T^{-n}y))$ converges to zero as $n \to \infty$.

Theorem 1.1. Let ξ, η be two partitions of M. If one is T-expansive and the other is T-contractive then any T-invariant summable function is $\mathfrak{S}(\xi) \cap \mathfrak{S}(\eta)$ -measurable.

2. The partition of M which is not necessarily measurable may be measurable, if it is considered locally in some sense.

Definition 2.1. $\mathfrak{U} = \{U_k | k=1, 2, \cdots\}$ is called a *local basis* of M, if 1) $\mathfrak{S}(\mathfrak{U}) = \mathfrak{B}$, 2) for any measurable set A such that $0 < \mu(A) < 1$ there exists some $U_k \in \mathfrak{U}$ which satisfies;

$$\mu(A \cap U_k) \cdot \mu(A^c \cap U_k) \neq 0$$

Definition 2.2. Let $\mathfrak{U} = \{U_k | k=1, 2, \dots\}$ be a local basis of M. $\{(U_k, \xi_k) | k=1, 2, \dots\}$ is called a measurable fibre structure (m.f.s.), if

1) ξ_k is a measurable partition of U_k ,

2) for almost all $x \in U_k \cap U_l$, $C_{\varepsilon_k}(x) \cap U_l = C_{\varepsilon_l}(x) \cap U_k$, where $C_{\varepsilon_k}(x)$ is an element of ξ_k which contains x.

An m.f.s. $\{(U_k, \xi_k) | k=1, 2, \dots\}$ defines an equivalence relation ~ and hence induces a partition of M. The relation $x \sim y$ for $x, y \in M$ means that there exist $U_{k_1}, \dots, U_{k_j} \in \mathbb{1}$ such that $x \in U_{k_1}, y \in U_{k_j}$ and $C_{\varepsilon_{k_i}} \cap U_{k_{i+1}} = C_{\varepsilon_{k_{i+1}}} \cap U_{k_i}$ for $i=1, 2, \dots, j-1$. Evidently ~ is an equivalence relation of M.

Theorem 2.1. Every equivalence class is a measurable set. And hence a partition of M is defined.

We denote such a partition by ξ .

3. Two measurable fibre structures.

When two measurable fibre structures $\{(U_k, \xi_k) | k=1, 2, \cdots\}$, $\{(V_l, \eta_l) | l=1, 2, \cdots\}$ are given, there exist two measures μ_1, μ_2 defined on $\mathfrak{S}(\eta_l) | C_{\xi_k}(x), x \in U_k \cap V_l$;

$$\mu_1(A) \equiv \mu(A/C_{\varepsilon_k}(x)), A \in \mathfrak{S}(\eta_l)|C_{\varepsilon_k}(x).$$

(i.e. μ_1 is a canonical measure with respect to the measurable partition ξ_k of U_k .)

$$\mu_2(A) \equiv \mu(\tilde{A}), \qquad \tilde{A} \in \mathfrak{S}(\eta_l) \ A = \tilde{A} \cap C_{\mathfrak{S}_k}(x)$$

Definition 3.1. An m.f.s. $\{(U_k, \xi_k)|k=1, 2, \dots\}$ is absolutely continuous with respect to another m.f.s. $\{(V_l, \eta_l)|l=1, 2, \dots\}$, if

- 1) the measure μ_1, μ_2 are equivalent,
- 2) $\mu(U_k \cap V_l) > 0$ implies $\mu_2(C_{\varepsilon_k}(x) \cap V_l) > 0$.

Theorem 3.1. If an m.f.s. $\{(U_k, \xi_k)|k=1, 2, \cdots\}$ is absolutely continuous with respect to another m.f.s. $\{(V_l, \eta_l)|l=1, 2, \cdots\}$ then $\mathfrak{S}(\xi) \cap \mathfrak{S}(\eta) = \mathfrak{N}$.

4. We obtain the following main theorem by means of Theorem 1.1 and Theorem 3.1.

Theorem 4.1. Let $\{(U_k, \xi_k) | k=1, 2, \dots\}, \{(V_l, \eta_l) | l=1, 2, \dots\}$ be two m.f.s.'s. If one is absolutely continuous with respect to the other, and if one of the partitions ξ and η is T-expansive and the other is Tcontractive then T is ergodic.

5. Example.

Baker's transformation. *M* is a unit square; $M = \{(x, y) | x, y \in [0, 1]\}, d\mu = dxdy.$

$$T; (x, y) \rightarrow \begin{cases} \left(2x, \frac{1}{2}y\right), & \text{if } 0 < x < \frac{1}{2}, \ 0 < y \le 1 \\ \left(2x - 1, \frac{1}{2}y + \frac{1}{2}\right), & \text{if } \frac{1}{2} \le x \le 1, \ 0 < y \le 1 \\ (x, y), & \text{if } x = 0 \text{ or } y = 0 \\ \xi = \{x \times (0, 1]; \ 0 < x \le 1\} \cup \{(x = 0)\} \cup \{(y = 0)\}, \\ \eta = \{(0, 1) \times y; \ 0 < y \le 1\} \cup \{(x = 0)\} \cup \{(y = 0)\}. \end{cases}$$

 ξ is *T*-expansive and η is *T*-contractive. Evidently, $\mathfrak{S}(\xi \wedge \eta) = \mathfrak{N}$. Applying Theorem 1.1, we conclude that *T* is ergodic.

No. 2]

Ү. Үокоі

References

- V. A. Rochlin: On the fundamental ideas of measure theory. I. Amer. Math. Soc. Trans., 10, 1-54 (1962).
- [2] Ja. G. Sinai: Dynamical systems with countably multiple Lebesque spectrum. II. Amer. Math. Soc. Trans., 68, 34-88 (1968).