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63. On a Property of Behavior in Time for Solutions
of the Wave Equation

By Yoshiharu TozAKI
University of Osaka Prefecture

(Comm. by Kinjiréo KUNUGI, M. J. A.,, March 12, 1971)

In this note we treat the solutions of the wave equation with even
space dimension. In the case of odd space dimension, it is easily veri-
fied that the solutions of the wave equation with initial data in S (=the
totality of Schwartz’s rapidly decreasing functions) decrease rapidly
when ¢ tends to infinity. On the other hand, in the case of even dimen-
sion, this is not always true. Generally the solutions can only decay
with ¢t-¥. For this reason we argue whether there are the solutions
which decay rapidly when ¢ tends to infinity. The similar problems
for the solutions of the second order hyperbolic equations are treated
by many authors. See [1],[2], [3], [4], [5].

The author wishes to thank Mr. K. Hayakawa and Dr. K. Masuda
who kindly suggested the improvement of the proofs.

We consider the following Cauchy problem:

(1) ou ", (A:n-dimensional )

o Laplacian; n=2p
(2) w@, 0)=¢() e S,
(3) u,(x, 0)=+(x) € S.
As is well known, the above Cauchy problem has the following unique
solution ;
» 4 (1 A\, p@—t8) 4
(4) u(e, B)=(2m)° (?-d—) [t Ilelg V1—|EF 5]

ren(g) o]

Theorem 1. We fix an arbitrary x. For u(z,t) decreases rapidly
when t tends to infinity, it is necessary and sufficient that the following
(5) and (6) are satisfied.

(5) jix—am P(&)dE=0, (m=0,1,2,...),

(6) jlw—slm WEAE=0, (m=0,1,2, ..
Proof. We put

oy eE—tO 4 o@—E)
It )=t jleISI «/1--|5|2 as= tj‘“ﬂ*—/l—j—g—w?ds’
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et e@—8
Jl(t’ ¢)—t J]HSUZ N/WEZ ds,

N o(x—&)
Jo(t; p)=t jt/2<l€l$5ﬁ—:—TS!—T/t—2dS.

We can easily verify that J,(f; ¢) decreases rapidly. We consider
Ji(t; ¢)

We note the expansion formula of (1—17%-"2 for small 7 ;
(7) (=)= Ot 4L | "ty paren(t)dt,
i=0 N!Jo
J@B=A-0)""
Substituting (7) in J,(¢; ¢), we have
N
Ji(t; @)=t 5 C ¥ j |EP o — E)AE + OtV -9).
j=0 1é1<t/2
Since
[ Jerew—oas=(lerow-nac—[ &P pa—g)as
161<t/2 1§1>¢/2
and the second term decreases rapidly, finally we get
N
(8) Tt =t 3 Ot (|66 pla—§)dE + 0.

This formula is valid for any ¢ from S and for any N.
Now we are in a position to prove the Theorem. Substituting (8)
in (4) and calculating the differentiation, we have the following

Wz, t)= j,% C(—2j—2p + 1>t-2f-2pjls|“so<x—s>de

+ 3oy |p - £)ag+ 0=
j=0
where C7’s are non zero and independent of N. When we multiply the
both sides of (9) by ¢! and let ¢ go to infinity, the left hand side tends
to zero and the right hand side tends to C(,J«p(x— &)dé. Consequently
we get

(9)

[ra—&az=o.

From this fact, it follows that the second term of the right hand side
of (9) is the order of £=2». Noting this fact we multiply the both sides
of (9) by t*? again and let ¢ go to infinity, then we get

fow—s1az=0.

Repeating this argument, we finally get

i p@—eaz=o,

figem v@—orae=o.
Conversely, if (5) and (6) are satisfied, from (9) u(x, t)=0("™) for any
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non-negative integer m. This completes the proof.

Lemma. Let ¢ satisfy (5). ¢ is identically zero if there are posi-
tive numbers C and e such that

10 (@) |< Ceelet,
Proof. Considering the right hand side of (5) as a polynomial of
x, we get

a1 [ero@rae=0

for any multi-index a.
Since the series

0 — . j
50 9@,  0=13)
J= .
uniformly converges to e~*** (&) in R, if |z| <e, it follows from (11) that

(12) 0=3; c,j(w- @)dE =[etp@)ds,  (al<e).

On the other hand je“"“'fgo(é)dé is an analytic regular function of
several complex variables in | mx|<e. From this fact and (11) we can
use the theorem of identity and then we get
J.e'”'fgo(é)dézo, for any z ¢ R,,
therefore we have ¢ =0. g.e.d.
We get easily the following Theorem 2 from Theorem 1 and lemma.
Theorem 2. Let u(x,t) be the solution of the Cauchy problem (1),
(2) and (3) where ¢ and  satisfy (10). If w(x,?) decreases rapidly when
t tends to infinity, u(x, t) is identically zero.

Remark 1. In case ¢,V ¢ 9, u(x,t) represented as a power series
of ¢! for sufficiently large ¢;

w(z, t)= ; (—27—2p+1)Ct-4-22||EP p(x— E)dE

+ 3 Oyt j £ (o — E)dE.

Remark 2. Lemma is not always true for any ¢ in S. Choose a
function f in S such that it vanishes in a neighborhood of origin and
let ¢ be Fourier transformation of f. If we operate the well known
formula

f@er=@ryr[onevp@as,  §=@m e
by (4,)™, we have
W) f@e = 11=@x) [(—[y—EPre= V().
If we put =0, we get
flé—ylzm ©(&)dé=0,  for any y in R,.
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