58. Prime Ideals in the Dual Objects of Locally Compact Groups

By Nobuhiko TATSUUMA Department of Mathematics, Kyôto University (Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1971)

1. Let G be a locally compact group, and Ω be the set of equivalence classes of unitary representations of G, dimensions of which are lower than a sufficiently large fixed cardinal number (for instance the large one of countable infinite or dim $L^2(G)$). Then we can introduce a product operation \otimes in Ω by the Kronecker product of representations, and the addition operation \oplus in Ω by the direct sum of representations (We allow infinite discrete direct sum). So that, a ring-like structure is given in Ω .

Now we shall call a subset \Im an *ideal* in Ω when

- i) \Im is closed with respect to the operation \oplus .
- ii) If ω is in \mathfrak{F} then any subrepresentation of ω is in \mathfrak{F} .
- iii) For any ω in \mathfrak{Z} and any ω_0 in Ω , $\omega_0 \otimes \omega$ is in \mathfrak{Z} .
- Moreover, we shall call an ideal \Im in Ω is *prime* when

iv) If ω_1, ω_2 are both disjoint to any representations in \mathfrak{Z} , in the sense of G. W. Mackey [1], then $\omega_1 \otimes \omega_2$ too.

As is well-known, Kronecker product of any ω in Ω and the regular representation \Re is unitary equivalent to a multiple of \Re . So that, the set \Im_{\Re} of classes of all subrepresentations of multiples of \Re gives the smallest non-empty (but in general not prime) ideal in Ω .

On the other hand, in the previous paper [2], we gave examples of non-trivial operator fields $\{T(\omega)\}$ over Ω which commute with the both of operations \otimes and \oplus , and $T(\mathfrak{R})=0$ (p. 225, Example 3 and p. 226, Example 5). There exists close connection between such an operator field and non-trivial prime ideal.

The purpose of this paper is to show this connection, and to give an example of non-trivial prime ideal in Ω as an extension of the examples in the paper [2]. And this leads to a new proof of that every unitary irreducible representations of compact group are finite dimensional.

2. Now we shall give the correspondence between non-trivial prime ideals in Ω and a family of non-zero operator fields $\{T(\omega)\}$ over Ω which commute with the both of operations \otimes and \oplus and $T(\Re)=0$, under the additional condition, that $T(\omega)^{-1}(0)$ is G-invariant for any ω in Ω .

For given such an operator field $\{T(\omega)\}\)$, it is easy to see that, $\Im = \{\omega \in \Omega / T(\omega) = 0\}$ (1)

is a non-trivial prime ideal in Ω (cf. the proof of Lemma 4.4. in [2]).

Conversely, if a non-trivial prime ideal \mathfrak{F} in Ω is given, we can construct an operator field which satisfies (1) as follows. At first, we fix an arbitrary element g in G. For any ω in Ω , we can decompose it as $\omega \sim \omega_1 \oplus \omega_2$, where ω_1 is disjoint from any representation in \mathfrak{F} . And put

$$T(\omega) = U_g(\omega_1) \oplus 0(\omega_2).$$

From above arguments, \Im contains \Re , so it is easily shown that the operator field $\{T(\omega)\}$ over Ω is required one.

3. Let \mathfrak{F}_F be the set of classes of unitary representations which don't contain any finite dimensional subrepresentation as a discrete component. Then,

Theorem. \mathfrak{I}_F is a prime ideal in Ω .

Before stating the proof of the theorem, we shall show the followings.

Lemma 1. If $\omega_1 \otimes \omega_2$ has a finite dimensional subrepresentation as a discrete component, then the both of ω_1 and ω_2 have the same properties.

To prove Lemma 1, we use the result of Lemma 2 which is a special case of Lemma 1.

Lemma 2. If $\omega_1 \otimes \omega_2$ contains the trivial representation 1 as a discrete component, then the both of ω_1 and ω_2 have finite dimensional subrepresentations as discrete components.

Proof. 1) Let the spaces of representations ω_1, ω_2 be $\mathcal{H}_1, \mathcal{H}_2$ respectively. Using G. W. Mackey's construction [1], the space of representation $\omega_1 \otimes \omega_2$ can be considered as the space of Hilbert-Schmidt operators A from $\overline{\mathcal{H}}_2$ into \mathcal{H}_1 , and the representation operator of g is given by $A \rightarrow U_g^1 A(U_g^2)^*$, corresponding to the operators U_g^1, U_g^2 of ω_1, ω_2 respectively. ($\overline{\omega}, \overline{U}_g$ mean the adjoint representation of ω, U_g respectively. cf. G. W. Mackey [1].)

2) Let A be the Hilbert-Schmidt operator which corresponds to 1-component in $\omega_1 \otimes \omega_2$ by the assumption, then

 $U_g^1 A(U_g^2)^* = A$, for any g in G. (2)

That is, the trace class operator A^*A on $\overline{\mathcal{H}}_2$ satisfies,

 $A^*A(U_g^2)^* = (U_g^2)^*A^*A$, for any g in G. (3) A^*A is not zero, and any eigenspace of A^*A , corresponding to non-zero eigenvalue, is finite dimensional. And it is easy to see from (3) that each eigenspace, is invariant with respect to $(U_g^2)^*$. That is, ω_2 contains a finite dimensional subrepresentation as a discrete component.

3) $\omega_1 \otimes \omega_2$ is equivalent to $\omega_2 \otimes \omega_1$, so we can exchange the roles of

 ω_1 and ω_2 , then we obtain the result about ω_1 .

Proof of Lemma 1. If $\omega_1 \otimes \omega_2$ contains a finite dimensional subrepresentation D as a discrete component, so $\omega_1 \otimes \omega_2 \otimes \overline{\omega}_1 \otimes \overline{\omega}_2$ contains $D \otimes \overline{D}$ as a discrete component. But from the theory of finite dimensional representations, $D \otimes \overline{D}$ contains the trivial representation 1 as a discrete component. That is, $\omega_1 \otimes \omega_2 \otimes \overline{\omega}_1 \otimes \overline{\omega}_2$ contains the trivial representation as a discrete component.

From the associativity of Kronecker products, we can use the result of Lemma 2 to the pair ω_1 and $\omega_2 \otimes \overline{\omega}_1 \otimes \overline{\omega}_2$, so the required result for ω_1 is given. The result for ω_2 is easily deduced by exchanging the role of ω_1 and ω_2 as above.

Proof of Theorem. Evidently \mathfrak{F}_F satisfies i), ii) and iv). And the property iii) is shown by Lemma 1 directly.

4. Corollary. Every irreducible unitary representations of compact groups are finite dimensional.

Proof. It is enough to show that \mathfrak{F}_F is empty set for compact group. Indeed, if not, since $\mathfrak{F}_{\mathfrak{R}}$ is the smallest non-empty ideal, \mathfrak{F}_F must contain \mathfrak{R} . But for a compact group, \mathfrak{R} contains trivial representation 1 as a discrete component (in fact, the constant function is in $L^2(G)$). So \mathfrak{F}_F has to contain 1. This contradicts to the definition of \mathfrak{F}_F .

References

- G. W. Mackey: Induced representations of locally compact groups. I: Ann. of Math., 55(1), 101-139 (1952), II: ibid., 58(2), 193-221 (1953).
- [2] N. Tatsuuma: A duality theorem for locally compact groups. J. Math. Kyôto Univ., 6, 187-293 (1967).

No. 3]