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1. Introduction. We hve discussed in [2] the hypoellipticity
of linear partial differential operators of the orm
( 1 ) P=-- + L(t, x D), x=(x, ..., Xn) Rn,

where D-(--i3/3x, ..., --i3/3x) and L(t, x $) is a polynomial in
$ e R of order 2/ with coefficients in C(RtxR). In particular we
huve been interested in operators which are called to be of Fokker-
Plank type. These were transformed by a change of independent vari-
able into one having properties (0), (I), (II) and (III) stated in Proposi-
tion 1 and Remark of [2] (see also Theorem 3 in 2), and we could show
that if an operator possesses these properties, it has a very regular
right-parametrix (see Theorem 3 in 2) and hence its transpose is hypo-
elliptic. Applying this theorem with I- [- 1, 1] and -{(t, s) 1< s

<t<l}, we can prove, or example, the following

Theorem 1. Let, for real r, (r} be an integer such that r <_ (r} r

+ 1 and M(t, x ) a polynomial in e R of homogeneous order ] with
coefficients in C(Rt R). Then both the operator

( ) P= + , t/"(t, D), l-O, 1, ...,
and its transpose tp are hypoelliptic in R+-RR, if is even and

if for every compact set K of Rn+l there exists a constant 0 such that
( 3 ) Re M(t, x ) >_ I , (t, x) e K, e R.

For the proof we use (9) with t e [-- 1, 1] and (t, s), 1_ s t_ 1,
and Lemmas 1 and 2 in 4.

On the other hand Kannai proved recently in [1] that the operator

3x
xD, D----i 3y

is hypoelliptic in the plane and moreover its transpose-----xDis not locally solvable there, of course not hypoelliptic. As an exten-
sion of this result we can give

Theorem 2. The transpose of operator (2), tP, with odd is
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hypoelliptic in Rn+l, if condition (3) is satisfied for every compact set
K of Rn+. Moreover, in case the coefficients of P are independent of
x, P is not hypoelliptic there.

This is a corollary of Theorem 4 which is stated in 2 and whose
proo will be completed in 3 by using Theorem 3 in 2 and the reason-
ing adapted in [1]. The proof of Theorem 2 will be briefly given in 4.

2. Statement of the main theorems. The following theorem is
an amelioration of one given in [2].

Theorem 3. Suppose that the L(t,x; Dx) in operator P of the
form (1) possesses real n-square matrices Ft and T(t,s) with entries in
C(1) and C(A), respectively, which have the following properties (I
=[0,1] and A-((t,s) 0_s(t_l})"

( 0 ) There exists a constant > 0 such that (t-- s) T(,)II) is
bounded in A.

( I ) If Lo(t, x; ) denotes the leading part of L(t, x; ), then for
every compact domain of Rn there exists a positive constant such
that, for every (t, s)e A and x e 9,

Re sLo(r, x T(t,))dr>_ . 2", e R.
(II) Let 9 be an arbitrary compact domain of R. Then the

coefficients of the polynomial in ,
[L(r, x T(,))dr,

are all bounded in A .
(III) The L(t, x; ) is written as a polynomial of Ft$ with coef-

ficients in (I)((R))2) and the inequality
[F$ [_const. [I’(t,s)]3), e R,

is valid for every (t, s)e A, if we put

(t,s)

Then, for each Xo e R, there exist an open neighborhood V of xo
and two sequences of distributions on W--((-1, 1) V) ([0, 1) V),

{E(p)(t, x s, y)}, {R(P)(t, x s, y)} (p-- 1, 2, ,),
such that E()--O and R()=0 for every p and for t <s, satisfying the
following, for every p,
(P. 1)
(P. 2)
(P. 3)

(P. 4)

P(t,x)E(p) ((t-- s) (x-- y)--R(),
E) C(W-{(t, x; s, y) (t, x)-(s, y))),

[or every (s, y) e C((O, 1) V)

.<E(), (fl>(,v) e C(( 1, 1) X V),
for every +(t, x) e C((-1, 1) V)

1) By IIT]I we denote supremum of the set {T;
2) a(t, x) e Co(I)(C(Rn)) means that the mapping t-.a(t, x) e C(Rn) is continuous

in I.
3) We wrote in [2] as IIFs[l const, liFt,all, but it is not sufficient.
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(E(), )(,) e C([0, 1) V),
(P. 5) for any integer NO, there exists an integer polO such that

R() e C(W) for all P-Po.
Their two sequences of distributions on W, {E()} and {R()}, are

called a very regular right-parametrix in W of P. The proof of
Theorem 3 has been essentially established in [2]. We would make an
additional remark that the property (III) can be dropped in case the
coefficients of L are independent of x.

Before ending this section we state the main theorem in this note"
Theorem 4. Suppose that the L(t,x; D) in operator P of the

form (1) and --L(--t, x D) both satisfy the hypothesis of Theorem 3.
Then tp i8 hypoelliptic in Rn+l.

This will be proved in the next section

:. Proof of Theorem 4. We give in this section the proof of
Theorem 4. Throughout this section we denote by P an operator saris-
ying the condition mentioned in Theorem 4. It has been established
in [2] that tp is hypoelliptic in (R--{0}) R. Therefore, or the proof
o hypoellipticity of tp in Rn+, it suffices to show that tp is hypoelliptic
in (-- 1, 1) R.

First, it ollows from Theorem 3 that P has a very regular right-
parametrix in W satisfying (P. 1) (P. 5), since L(t, x D) satisfies the
hypothesis in Theorem 3. Let V be an open set stated in Theorem 3,
G-(-1, 1) V and u be a distribution on G satisfying tPue C(G).
Taking two domains G, G and a function fl e C(G) so that G G G
GG and fl--1 on G, we have

tP(flu)- tpu+X,
where tpu is in C(G), and X is a distribution on G with compact sup-
port and vanishes on G. It then ollows rom (P. 2) and (P. 4) that
( 4 (E()(t, x s, y), tP(flu)}(t,) e C(G ([0, 1) V)).
By (P. 1) and (P. 3) we have
( 5 ) (U)(8, y)--(E(p) tp(u)}(t,s + <R(p)

for all p and s >0. On the other hand we can assert by (P. 5) that for
any integer N>0, there exists an integer p>0 such that

(R(), flu}(t,) e C([0, 1) V)
for all p_>p. Thus we finally obtain by (4) that the right hand side of
(5) is in C(G f ([0, 1) V)) for all p>_p. So that u is infinitely differ-
entiable in G ([0, 1) V) and hence u is in C([0, 1) V). It follows
similarly from the assumption on --L(--t,x; D) that u is also in
c((- 1, 0] v).

By the same argument as in [1] we can see that u is in C(G). In
fact, let be a distribution on G defined by
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Set v-u-. Obviously supp [v] is on the hyperplane --0. Therefore,
denoting by V0 a compact subdomain of V, we can find a finite number
of distributions on V0, v (]-1,..., N), such that

6 ) v (Ev) on (-- 1, 1) V0,

where Ev are distributions on (-1, 1) V0 defined by
(Ev, (, x)-(v, (0, x)), e C((-1, 1) V0).

Calculating we obtain

( 7 P--(Nv) + (Nw)

w being some distributions on V,. On the other hand, we can im-
mediately obtain

P,) (P-N[(+0, )--(--0, z)], )
for C((-1, 1) x V,). Hence
( 8 ) P-[(+0, z)-(-0, z)l.
Thus it follows from (6), (7) and (8) that v--0 and hence --. There-
fore, by (8) we have (+ 0, z) =(--0, ). Consequently C"(G).
Now, taking account of the fact that P(O/Ot) C(G), we can assert,
by the same argumen as above, /Or(+ O, z) /8t(-O, z) and so on.
his completes the roof of heorem 4.

4. Proof of Theorem Z. We are going to rove heorem 2. It
is assumed that P is written in the form (2) with odd and satisfies the
hypothesis in heorem 2. or the roof, we have only to show tha

L(t, z D)-- t/’>(t,
and -L(-t, ; D) satisfy the hypothesis of Theorem 8. To do so, we
have only to choose

F-(t)/I, t [0, 1],
(9) T{,)-- +-_8+ In, 081,

where I is the identity matrix of order n. In tact these matrices have
the properties (0), (I), (II) and (III) in Theorem 3. This can be verified
by using the following two lemmas.

Lemma 1. Le$ a be real and al. Then we have
(x--Y) 1 or Oy<x.

For any integer lO, there exists a constant COLemma 2.
such tha

st _C t+-s+

for t s in case is even and for t s >_ O in case is odd.
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Thus it follows from Theorem 4 that tp is hypoelliptic in R/.
The latter half of Theorem 2 is showed as follows. Let the coef-

ficients o the P be independent of x. For every $ e R, we introduce,
as in [1], functions u(t, x) defined in (--1, 1)R as

u(t, x)--exp {ix- .o :r/"M(v )

Obviously, these are solutions of Pu=O. It now follows from (I), (II)
and the T(t,s) in (9) that there exist positive constants c and C such that

u,(t, x)]_< C exp { c T(50)$ I"}, $ e R,
for every (t, x) e (-- 1, 1) Rn. Thus, if we take a real number s so that
s 2/ + n, the function determined by

u(t, x) [ (1 +15 [)-u,(t, x)d$

satisfies the equation Pu=O but is not infinitely differentiable in
(--l, 1)X Rn. This shows that P is not hypoelliptic in RTM.
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