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83. Some Radii Associated with Polyharmonic Equation. II

By Shir60GAWA*) and Ichiz6 YOTSUYA**)

(Comm. by Kinjir6 KUNUGI, M. ft. A., April 12, 1971)

Introduction. In the preceding paper [2], we treated the poly-
harmonic inner radius of a domain and in the present paper we are
going to deal with the polyharmonic outer radius. G. PSlya and G.
Szeg5 [3] defined the outer radius of a bounded domain by a conformal
correspondence from the exterior of a given bounded domain to that of
a circle and showed that it can be also given by the Green’s function
of the exterior of a bounded domain relative to the Laplace’s equation
z/u--0. Moreover defining the biharmonic outer radius of a domain by
the Green’s function of the exterior of it concerning with the bihar-
monic equation Au-0, they calculated the ordinary outer and bihar-
monic outer radii of a nearly circular domain. The aim of this paper
is to extend the above results. In the first place, we obtain the Green’s
function of the exterior of a disk with the pole the point at infinity
relative to the n-harmonic equation /u--0 and define the n-harmonic
outer radius o a bounded domain. Applying the above results, we
compute the n-harmonic outer radius of a nearly circular domain and
it is noticeable that it is monotonously increasing with respect to in-
teger n, which is contrary to the act in case of inner radius.

1. Outer radii associated with polyharmonic equations.
We use the ollowing notations hereafter. Let D be a bounded

and simply connected domain in the complex z-plane, C the boundary
of D, D the exterior of D, z-x/iy the variable point in D, r the dis-
tance rom the origin to z and the point at infinity of the extended
complex plane.

Definition 1. The function satisfying following two conditions is
called the Green’s unction of D with the pole c relative to the n-har-
monic equation z/u-0.

(i) The function has in a neighbourhood of c the form except-
ing plus and minus signs

log r+ ar2(n-" + P(x, y) + h,,(z),
where the function P(x, y) is a polynomial of x and y with order =<2n
--3 and h,(z) satisfies the equation z/u--0 in D.

(ii) On the boundary C, the unction and all its normal derivatives
of order _<n- l vanish.
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Theorem 1. If D is the disk IzlR in the complex z-plane, the
Green’s function Gn(z) of D with the pole c relative to the equation
zlnu-O is as follows,

Gn(z) log --R-- + --1 - 1

Proof. It is obvious that the function G(z) satisfies the condition
(i) of the Green’s unction. Denoting

R
we can rewrite the function G(z) as

1 log2+ (1-2)G(z)-
And if f() denotes the following unction

--1

og+ (-)
k=l

f(1) and f(")(1) for such an integer as 1gn--1 vanish. Conse-
quently we can prove that the unction G(z) satisfies the condition (ii)
of the Green’s function. That establishes the theorem.

G. PSlya and G. Szeg5 [3] defined the outer radius of a given
domain D as ollows" D being mapped conformally onto the exterior
of a circle so that both points at infinity correspond each other and the
linear magnification at is equal to 1, the radius of the circle so
obtained is e. When the Green’s unction of D with the pole rela-
tive to the equation Au=O is

log r-- h(z),
they showed that the outer radius is determined by

log -lim h(z).

They also defined the biharmonic outer radius associated with the
biharmonic equation Au=O as ollows" Denoted the Green’s unction
of D with the pole relative to the biharmonic equation Au-0 by

log 1 + ar + bx + cy + h(z),

and putting
l
2

the positive quantity is called the biharmonic outer radius of D.
Now we define the n-harmonic outer radius of D associated with

the n-harmonic equation zlnu-O.
Definition 2. If the Green’s function of a domain D with the

pole c relative to the equation z/=u=0 is
log r+ a r(-) + P(x, y) + h=(z),

and we put
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log -- lira h(z) (n-- 1),

1 =lal (n>=2),
2(n-- 1)(-we call the positive quantity e the n-harmonic outer radius of the

domain D.
Remark. When the domain D is a disk IzlR in the complex

z-plane, the Green’s function of D with the pole oo relative to the equa-
tion lu--0 is

log --R-’
and the Green’s unction of the same relative to the equation
has been given by G. PSlya and G. Szeg5 as follows

R R-log
r 2R

Using the preceding two Green’s unctions and the Green’s unction
given in Theorem 1, we can obtain the ordinary outer radius, the bihar-
monic outer radius and the n-harmonic outer radius for an arbitrary
integer n(n>=3) of the disk IzlR, which are equal to the radius R o
the given disk.

2. Outer radii of a nearly circular domain.
In this section, we treat the polyharmonic outer radius of a nearly

circular domain defined in former section.

Definition 3. Let
( 1 ) r-1 + p()
be the equation of the boundary of a domain in polar coordinate r and
9, where the periodic function p() represents the infinitesimal varia-
tion of a unit circle. We call the domain bounded by (1) the nearly
circular domain.

We consider the Fourier series

( 2 p(9)--ao+ 2 (a, cos m9 + b sin mg),
=1

where each coefficient a or b is the infinitesimal of the first order.
Terms of higher infinitesimal than the second order are neglected in
all the discussions of this section.

G. P61ya and G. Szeg5 [3] obtained the ordinary outer radius
and the biharmonic outer radius of the nearly circular domain as
ollows,

"P-- 1 + ao+ Y: (2m-- 1)(a+ b),
(3) ;--1 + a0 + , (4m-- 3)(a+ b).

As an extension of (3), we prove the following theorem.
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Theorem 2. For an arbitrary positive integer n, the n-harmonic
outer radius of the nearly circular domain r1+ p() is

( 4 ) ’n 1 + ao + , (2nm-- 2n + 1)(a + b).

Consequently, increases monotonously with respect to n.

Proof. We seek the Green’s function G(z) of r>l + p() with
the pole oo relative to the equation AnU=O in the orm

1

_
(1 r2)Gn(z)- log r+ -{ =1 + p(r, 9) + q(r, (2),

+oo --i

p(r, p)-- , r-(A, cosm+B, sin rap),
m=0 k=0

+oo ,--I

q(r, )= , r-(A, cosm+B, sin rap),
m=O k=O

where the coefficients of p(r, 9) are o the first order and those of q(r, 9)
ot the second order. The -harmonie outer radius is determined by

2(n--1)(-1) (--i +A_l,0+ A’_l,0

and so we have

( 5 -1 + (-- 1)n(An -,,o - An-l,0) + A_,0.2n--1

Setting

2 r and F(2)
=, -(1-- 2)

we can rewrite as
G(z) F(2) + p(r, (2) + q(r, ).

Let be the normal of the boundary of the nearly circular domain,
then the condition G/3-O on the boundary can be replaced by
3G/3r-O. We obtain the following equality

dF_ 1 (l__)n_ r,
dr

and neglecting the terms higher than the second order, on the boundary
r-- 1 + p(), we have

F(2) 0 and dF 0 1 <_ _< n-- 3
dr

that is, F(2) and all its derivatives order <__n--3 are negligible on the
boundary. So the boundary conditions are

9) + p(9)--dr p(1, 9) + q(1, 9)

dr----zP(1, 9)+ P(9) 3r+
p(1, )+ 3r" q(1, )-o l__<a__<n-3,

3n-2 3n-2 3n-2( 6 ) 3r_----p(1, )+ p()
3r_

.p(1, F)+ 3r_ .q(1, )
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(-- 1) 2-(n 1) {p(@)}
n-1 n n-1

8rn_-----5- p(1, @) + p(@)
8rn

p(1, (f) + rn_ q(1, @)

=(-- 1) 2n-(n 1) p(@) + (-- 1)n- 2-(n-- 3)n {p(@)}.
The first order terms yield

p(1, ):0,
p(1, )--0 lgq n--2,

(7) r-
8rP(1, @)--(--1) 2-1(n 1) p().

Noting that, by the first and second conditions of (7), p(r, ) has the
factor (r--l)n-, and on account of the last condition of (7), we obtain

(8) p(r, )= --(1--r)n- a0+2 r-(a cos me +b sin m),
in particular,
( 9 ) A_,0= (-- 1)ha0
We consider the second order terms. By the first and second equalities
of (6) and those of (7) we have

q(1, ):0 and q(1, )-0 lggn-3,

so that it must be the form
--1

(o) ’0r A, -(r- 1) (Ar + B),

where A and B are constants, and so we have
(11) A_,o-A.
Taking now the mean values of second order terms, we find

A +B:(--1)’-(n 1){a+2:(a+ b)},
(n + 2)A + (n-2)B- (- 1) n(n+ 1) [a + 2 (a

+b +(-Da m(a+ bl,

and so we have

(12) A (-- 1) 2n-- 1 a+ F, (2nm-- 2n + 1)(a+ b)
’tl

By virtue of (5), (9), (11) and (12) we find

%- 1 + ao + (2nm-- 2n + 1)(a + b).

This is the equality (4) of the theorem.
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