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0o Introduction. In this paper we shall give complex powers
of a system of pseudo-differential operators which is not necessarily
elliptic. Complex powers of an elliptic pseudo-differential operator
were defined by Seeley [5]. He constructed complex powers of a pseudo-
differential operator p(x, D) defined on a compact C-manifold without
boundary. Here we shall construct symbols for complex powers only
by local calculation which works even for operators defined locally.

Recently Nagase-Shinkai [4] gave a concrete representation of
complex powers of a pseudo-differential operator. They got the formula
by using algebraic relation for the symbol of a pseudo-differential
operator. But their method is not applicable to the case of systems,
because they essentially used the commutativity of symbols.

We shall adopt the method of the Dunford integral for the symbol
of the parametrix for (p(x,D)-I). The relation between para-
metrices for (p(x, D)-I) and (p(x, D)--2I), called the quasi-resol-
vent equation, plays an important role in place of the resolvent
equation.

In the case of a single operator complex powers in the present
paper coincide with those in [4]. We also note that complex powers of
a parabolic system are asymptotically equal to operators with kernels
whose supports lie in the half-space.

1. Main theorem. Let () be a fixed basic weight function,
that is, a C-function on R which have properties" (1+151)__<()
<C0(1+[$1) for some p(0<p=<l) and [32()[<Cfl()-t"t for any (cf.
[4]), where =(qi, ...,q) is a multi-index, Icl-+... +, and
=3,’...3. We denote by S[’ the set of all C-symbols p(x, ) on
R ><R satisfying, for any multi-index er,/, I3Dp(x, )l<C.,a2()-t"
for some constant C.,a, and we define the pseudo-differential operator
p(x,D) of class S by

p(x, Dx)u(x) (27c)-nex’p(x, )t()d,
where D=(-i/3x).. .(-i3/3x,),, and ()=[u]() denotes the
Fourier transform of a rapidly decreasing function u(x) defined by

,( e- x’u(x)dx.
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Set S/-_<< S?. Then, we have the ollowing

Theorem.. Let p(x,Dx)-(p(x,Dx)) be anNN-matrix of pseudo-
differential operators pj(x, Dx) of class S’2. We set the assumptions"

A) Let l(x, ), ..., N(x, ) be eigenvalues of p(x, ). Then, we
have, for some o>0, Ij(x, )]>_-0() for x, eRn, ]--1,2, ...,N.

B) There exists a constant C such that dis ((x, ), (--c, 0])
>__ c()

Then, we have a one parameter family {pz(x, $)} of symbols pz(X, )
of class Se, for complex numbers z, such that, for any zl, z2,

pz,(X, D)pz.(x, D)=_ Pzl/z,(X, D), pl(x, D)=_ p(x, Dx), po(X, D)=-I
(mod S;).

Remark 1 . In the case when the assumptions A) and B) hold for
large $ we take a C-function () such that 0 _<_ ($) __<1, ($)-=1 for
[[<=r and =0 for [[>__2r(r>0), and consider p((x, )=p(x, )+ r4x()I
for a large v. Then p(:)(x, ) satisfies A) and B), so that complex powers
or p()(x, D) in the theorem exist and become those for P(x, D) since
p()(x, D)--p(x, D) (mod S;).

2. When p(x, ) is defined in/2 R or an open set 9 of R, and
satisfies A) and B) there, the theorem holds in the sense" a(x)(pz,b(x)p
--p,/z)a(x)=_O, a(x)(pl--p)a(x)--O and a(x)(po--I)a(x)--O (modS;),
where a(x) and b(x) are functions of class C(tO) such that b(x)= 1 in a
neighborhood of the support of a(x).

2. Construction of parametrix. Using constants in the as-
sumptions A) and B) we set

X0-{ dis (, (--c, 0])<=1/2 min (0, C)},
X-{ dis (, (- c, 0]) _<_ 1/2 min (0, C)2()}.

Proposition 2.1. Let p(x, ) satisfy the assumptions A) and B).
Then, there exists a parametrix r( X,D) of (p(x,D)--I) for any
e o in the sense
r( x, D)(p(x, D) I) (p(x, D) I)r( x, D) =_ I (mod S;),

and r( x, ) has the analytic extension to and has the form
r(; x, )-- , ()q( x, ) in

j=O

where () are C-functions, and q( x, ) satisfy
q0(; x, )-(p(x, )--I)-,

1(2.1) , , 3q(; x, )D"(p(x, )--I)--0 in X,,N>=I.

Furthermore, r( x, ) satisfies
"Dr 2(2.2) I( )(() x )l<=C.,(ll+l) 2()-- or any y Xo.

The proposition is the direct consequence of the ollowing

Lemma 2.2. q( x, ) in Proposition 2.1 satis/y
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(2.3)
i) Iq0(; x, )lgC0(()

ii) IDq0(; x,
in X (la+ fll).

(2.4) [3Dqs(5; x, )]<C.,,(2() +]5])-2()- ’"’ in X (]21).
(2.5) [(3Dq)(2($) x, )[C.,,2()---’"([+ 1)-or V e X0 (] 0).

From (2.3) and (2.4) we have [3Dq(;x, )]C.,o,R()---= in

2. Then as in Theorem 2.7 of [2], we can choose a sequence of
functions s()e C=(Rn) sueh that 0()1, s()=0 near $=0, and

1 near [1= for ]> 0, and

( ,-(
Purthermore, by
satisfies I(0D)(;,)1,2()-(2()+11)- in e. hen, we
have (.).

Proof of Lemma Z.Z. he inequality i) o (.g) is obvious from
the assumptions A) and B). o rove the ohers, we shall use the ex-

liei form of ODq,( z, ) and ODq(; , ). or Il-1 we have
Oqo qoOPqo, Diqo-- qoDiPqo, so that we get

(2.6) 3Dqo= ,,:.., uo(,)qoP

where p()("(x, )=3Dp(x, ), and the summation is taken under the
condition" lglg]+fl], a+...+a-,fl+...+fl=fl. Hence we
have ii)of (2.3). From (2.1) we can easily see that 3Dq also have
the form (2.6) and we get (2.4). The inequality (2.5) is clear rom (2.3)
and (2.4).. Quasi.resolvent equation. Proposition 3.1. Let r(; x, ),
]=1, 2, be the symbols of parametrices for (p(x, D)--I). Then we
have the quasi-resolvent equation in the sense

r( x, D)r( x, Dx)
(3.1)

=(_)-i(r( x,n)--r(; x,D))+R(,; x,D),

where R(, x, ) S;, and satisfies for any , fl, and real s
(3.2) 3DR(,; x, )C.,,,(]-] (][T 1)([+ 1))-(),
where C,.,, depends only on , fl and s.

Proof. By Proposition 2.1 we have, or some K, K e $7, r()(p
I) I + K() and (p- I)r() I + K(). Considering r()(p
I)r() r()(p I)r(), we have (- )r()r() r()-r()

+ K()r() r()K(). Then, setting R(, x, D) (- )-
(K()r() r()K()), we get (3.1). Since K, K S;. By the

ormula or the symbol of the product of pseudo-differential operators
in [3], we have or any N
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where

a(r()(p-I))(x, ), 31 Or(; x,D)D;(p(x,)-I)+Rx(; x,),
ia<N

RN(I x,

-- ?.! (1-t)-Of(; ,+t).((+,

(<y}-=(1 +ly)-n/ and <D,}n"=(1 +ID,])./ for even non+ 1).
N-1 N-1We write r(; x, $) =o q(; x, ) += (() --1)q( x, $)

+()q( x, ). Then, using (2.1), we have

K(, x, $)= 1 3((1--)q())D(p--I)
II<N IN-I

+ 1 ())D(p--I)= ((q

+N(2)-" II fir e_i.,<y>_no(D,>Oior(;x,+tfl)

(p(x + y, $)-I)dtdydflI+I+ I.
Using (2.4) and noting (()-1) have compact supports for ]1, we
have for any a’, ’ and real s

,, , ,()-(()+lSl)-(3.4) ]3 DI]< C.,.,.
Since ] N in I, we have (2.4)

(3.5) IDDII<C,,,,,2() -’(2()+15,l).
If we estimate I by the similar way to the estimate of the remainder

term in the expansion formula for the symbol of the product of pseudo-
differential operators in [3], then, using (2.3) and (2.4) we have
(.6) I, DII<C,,,,()--’(() +I,I)-’.
Consequently, or ny , nd rel we hve, rom (.), (.4)-(3.6),

13DIK,( , )IC.()-(() +I,I)-by fixing large N. We get the same estimate or K(;x, ) nd et
(3.2).

4. Proof of Theorem. For z <0 we define p(x, $) by

p(, )=(2=i)- r( , )d,
where denotes a curve begining at -, passing long (-, 0], turn-
ing around the origin counterclockwise, and back to - along (-, 0]
( can be chosen disjoint rom te eigenwlues o p(x, ) and dis (,
(--, 0])=>0 for some ). Then we have

Since the integrand is analytic function of in X uniformly, we have,
noting (2.2),
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_<_(2zr)-[ 1(2()y)l 1(3Dr)(2()y x, )1 2() Idyll

(2)- vl(v]+)- dv] ($)-,.

Hence, we get p(z, $) e S.
Next we take two curves F, F in X0 like F such that dis (F, F)

>0 and F lies inside F. From the uniform analyticity of r( x, )
in and (2.2) we have

p(x, )=(2i)-[ r(, x, )d for z <0, ]= 1, 2.
d

Consider p,(x, D)p(x, D)u(x) for a rapidly decreasing function u(x).
Then, by Fubini’s theorem, we have

p,(x, D)p(x, D)u(x)

(2i)-[ [ ’r(l x, D)r( x, D)u(x)dld.
J

Now we apply Proposition 3.1 to r(; x, D)r(, x, D). Then noting

[ f ’’(,--)-’r( x, D)u(x)d= O,

and by (3.2)

| ’R(I, 2 Dx)dld. e S;,x
F J

we have p,(x, D)p(x, D)u(x)= p+(x, D)u(x) (mod S). Since
p_(x, $)=r(O x, ), p_(x, ) is the parametrix for p(x, D). Hence,
defining p+(x, D) by p(x, D)p(x, D) the proof is completed.

5. xample. Let p(x, )-(i$I--po(X, )), =(, ..., n-1), be
a parabolic system of differential operators such that A) and B) hold
for 2() (1 +$+[l)/() (see [1], p. 239). Then Ko(x, w) (2)

[e"p(x, )-d$ has the support in the half-space" {w e R; w0}.
Noting 3Dp(x, ), + fl#O, are functions independent of and using
the form (2.1) and (2.6), we see that p(x, D) are asymptotically equal
to operators whose distribution kernels K(x, w) have supports in the
half-space in w and have, for any 5>0, the estimate of the form

[K(x, w)[C(w)-/ exp {-c(][/w)/(-)}, w>5.
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