109. An Analogue of the Paley-Wiener Theorem for the Euclidean Motion Group

By Keisaku Kumahara*) and Kiyosato Okamoto**)
(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1971)

1. Introduction. The purpose of this paper is to prove an analogue of the Paley-Wiener theorem for the group G of the motions of the n-dimensional euclidean space.

Let \hat{G} be the set of all equivalence classes of irreducible unitary representations of G. Let $L_{2}(G)\left(\right.$ resp. $\left.L_{2}(\hat{G})\right)$ be the Hilbert space of all square integrable functions on G (resp. \hat{G}) with respect to the Haar measure (resp. the Plancherel measure). Then the Plancherel theorem states that the Fourier transform gives an isometry of $L_{2}(G)$ onto $L_{2}(\hat{G})$ (see § 2).

Let $C_{c}^{\infty}(G)$ be the space of all infinitely differentiable functions with compact support on G. By an analogue of the Paley-Wiener theorem we mean the characterization of the image of $C_{c}^{\infty}(G)$ by the Fourier transform.

As a number of articles ([1], [2], [4], [7]-[9] and etc.) indicate, in order to attack the problem one has to consider the Fourier-Laplace transforms of $C_{c}^{\infty}(G)$ which are (operator-valued) entire analytic functions "of exponential type" on a certain complex manifold. In general, \hat{G} is not a C^{∞} manifold but the space of all orbits in a real analytic manifold by actions of the "Weyl group" which gives equivalence relations. The Fourier-Laplace transform T_{f} of an element f of $C_{c}^{\infty}(G)$ is defined on the "complexification" of this real analytic manifold and satisfies certain functional equations derived from the actions of the Weyl group.

Detailed proofs will appear elsewhere.
2. Preliminaries. Let G be the group of motions of n-dimensional euclidean space \boldsymbol{R}^{n}. Then G is realized as the group of $(n+1)$ $\times(n+1)$-matrices of the form $\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right),\left(k \in S O(n), x \in \boldsymbol{R}^{n}\right)$. Let K and H be the closed subgroups of the elements $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right),(k \in S O(n))$ and $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right),\left(x \in R^{n}\right)$, respectively. Then H is an abelian normal subgroup of G and G is the semidirect of H and K. We normalize the Harr measure $d g$ on G such that $d g=d x d k$, where $d x=(2 \pi)^{-n / 2} d x_{1} \cdots d x_{n}$

[^0]and $d k$ is the normalized Haar measure on K. Let $\mathscr{S}_{5}=L_{2}(K)$ be the Hilbert space of all square integrable functions on K. We denote by $\boldsymbol{B}(\mathfrak{S})$ the Banach space of all bounded linear operators on \mathfrak{F}.

If G_{1} is a subgroup of G, we denote by \hat{G}_{1} the set of all equivalence classes of irreducible unitary representations of G_{1}. For an irreducible unitary representation σ of G_{1}, we denote by $[\sigma]$ the equivalence class which contains σ. Denote by \langle,$\rangle the euclidean inner product on \boldsymbol{R}^{n}$. Then we can identify \hat{H} with \boldsymbol{R}^{n} so that the value of $\xi \in \hat{H}$ at $x \in H$ is $e^{i\langle\xi, x\rangle}$. For simplicity, we identify $k \in S O(n)$ with $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right) \in K$ and $x \in \boldsymbol{R}^{n}$ with $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right) \in H$. Because H is normal, K acts on H, and therefore on \hat{H} naturally : $\langle k \xi, x\rangle=\left\langle\xi, k^{-1} x\right\rangle$. Let K_{ξ} be the isotropy subgroup of K at $\xi \in \hat{H}$. If $\xi \neq 0, K_{\xi}$ is isomorphic to $S O(n-1)$.

The irreducible unitary representations of G were enumerated and constructed by G. W. Mackey [6] and S. Itô [5] as follows. We fix $\xi \in \hat{H}$. Let χ_{σ} and d_{σ} be the character and the degree of $[\sigma] \in \hat{K}_{\xi}$, respectively. Let R be the right regular representation of K. If $\sigma(k)$ $=\left(\sigma_{i j}(k)\right)\left(1 \leqq i, j \leqq d_{\sigma}\right)$, we put

$$
P^{\sigma}=d_{\sigma} \int_{K_{\xi}} \overline{\chi_{\sigma}(m)} R_{m} d_{\xi} m
$$

and

$$
P_{i}^{\sigma}=d_{\sigma} \int_{K_{\xi}} \overline{\sigma_{i i}(m)} R_{m} d_{\xi} m,
$$

where $d_{\xi} m$ is the normalized Haar measure on K_{ξ}. Then P^{o} and P_{i}^{c} are both orthogonal projections of \mathfrak{S}. Put $\mathscr{S}_{\varepsilon}^{\sigma}=P^{\sigma} \mathfrak{S}_{\varepsilon}$ and $\mathfrak{S e}_{i}^{\sigma}=P_{i}^{a} \mathfrak{S}_{\mathrm{L}}$. We denote by U^{ξ} the unitary representation of G induced by ξ, i.e. for $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$

$$
\left(U_{g}^{\xi} F\right)(u)=e^{i\langle\xi, u-1 x\rangle} F\left(k^{-1} u\right), \quad(F \in \mathscr{S}, u \in K)
$$

The subspaces $\mathfrak{S}_{i}^{\sigma}\left(1 \leqq i \leqq d_{\sigma}\right)$ are invariant under U^{\S} and the representations of G induced on \mathscr{S}_{i}^{σ} under U^{ε} are equivalent for all $1 \leqq i \leqq d_{\sigma}$. We fix one of them and denote it by $U^{\S, \sigma}$. Two representations $U^{\xi, \sigma}$ and $U^{\xi^{\prime} \sigma^{\prime}}$ are equivalent if and only if there exists an element $k \in K$ such that $\xi^{\prime}=k \xi$ and $[\sigma]=\left[\sigma^{\prime k}\right]$ where $\sigma^{\prime k}(m)=\sigma^{\prime}\left(k m k^{-1}\right),\left(m \in K_{\xi}\right)$.

First we assume that $\xi \neq 0$. Then $U^{\xi, \sigma}$ is irreducible and every infinite dimensional irreducible unitary representation is equivalent to one of $U^{\xi, \sigma},\left(\xi \neq 0,[\sigma] \in \hat{K}_{\xi}\right)$. Since $\mathfrak{S}_{c}=\oplus_{[\sigma] \in \hat{K}_{\xi}} \mathfrak{S}_{C}^{\sigma}$ and $\mathscr{S}^{\sigma}=\oplus_{i=1}^{d_{\sigma}} \mathfrak{S}_{\boldsymbol{G}}{ }^{\sigma}$, we have

$$
\begin{equation*}
U^{\xi} \cong \bigoplus_{[\sigma] \in \hat{K}_{\xi}}(\underbrace{U^{\xi, \sigma} \oplus \cdots \oplus U^{\xi, \sigma}}_{d_{\sigma} \text { times }}) \tag{2.1}
\end{equation*}
$$

Next we assume that $\xi=0$. Then $U^{\xi, \sigma}$ is reducible and $K_{\xi}=K$. For any irreducible unitary representation σ of K we define a finite
dimensional irreducible unitary representation U^{σ} of G by $U_{g}^{\sigma}=\sigma(k)$ where $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$. Then we have $\underbrace{U^{0, \sigma} \cong U^{\sigma} \oplus \ldots \oplus U^{\sigma}}_{d_{\sigma} \text { times }}$ and U^{0} $\cong \oplus_{[\sigma] \in \hat{K}} U^{0, \sigma}$. Moreover every finite dimensional irreducible unitary representation of G is equivalent to one of $U^{a},([\sigma] \in \hat{K})$.

We denote by $(\hat{G})_{\infty}\left(\right.$ resp. $\left.(\hat{G})_{0}\right)$ the set of all equivalence classes of infinite (resp. finite) dimensional irreducible unitary representations of G.

Let \boldsymbol{R}_{+}be the set of all positive numbers and let M be the subgroup of the elements $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1\end{array}\right),(m \in S O(n-1))$. Then for any $\xi \in \hat{H}$ of the form ${ }^{t}(a, 0, \cdots, 0), a \in \boldsymbol{R}_{+}$, we have $K_{\xi}=M$. It follows from the above results that $(\hat{G})_{\infty}$ can be identified with $\boldsymbol{R}_{+} \times \hat{M}$. It can be proved that the Plancherel measure of $(\hat{G})_{0}$ is zero and the Plancherel measure on $(\hat{G})_{\infty}$ is explicitly expressed as $\left(2 / 2^{n / 2} \Gamma(2 / n)\right) a^{n-1} d a \otimes d_{\sigma}$. For any $f \in C_{c}^{\infty}(G)$, we put

$$
T_{f}(\xi, \sigma)=\int_{G} f(g) U_{g}^{\xi, \sigma} d g \quad\left(\xi \neq 0,[\sigma] \in \hat{K}_{\xi}\right)
$$

For $\xi={ }^{t}(a, 0, \cdots, 0),\left(a \in \boldsymbol{R}_{+}\right)$, we write briefly $T_{f}(\xi, \sigma)=T_{f}(a, \sigma)$. Then the following Plancherel formula holds:

$$
\begin{equation*}
\int_{G}|f(g)|^{2} d g=\frac{2}{2^{n / 2} \Gamma(n / 2)} \sum_{[\sigma] \in \hat{M}} d_{\sigma} \int_{R+}\left\|T_{f}(a, \sigma)\right\|_{2}^{2} a^{n-1} d a, \tag{2.2}
\end{equation*}
$$

where $\left|\mid \|_{2}\right.$ denotes the Hilbert-Schmidt norm.
For any $f \in C_{c}^{\infty}(G)$ we put

$$
T_{f}(\xi)=\int_{G} f(g) U_{g}^{\xi} d g
$$

The space, on which $T_{f}(\xi, \sigma)$ operates, depends not only on σ but also on ξ. However $T_{f}(\xi)$ is an operator on a fixed Hilbert space $\mathscr{S}_{\text {c }}$, so that we can consider the $\boldsymbol{B}(\mathfrak{F})$-valued function T_{f}. We shall call T_{f} the Fourier transform of f. As above we write $T_{f}(\xi)=T_{f}(a)$ for $\xi={ }^{t}(a, 0, \cdots, 0),\left(a \in \boldsymbol{R}_{+}\right)$. Then it follows from (2.1) and (2.2) that

$$
\int_{a}|f(g)|^{2} d g=\frac{2}{2^{n / 2} \Gamma(n / 2)} \int_{R+}\left\|T_{f}(a)\right\|_{2}^{2} a^{n-1} d a .
$$

3. Definition and some properties of the Fourier-Laplace transform. For each $\zeta \in \hat{H}^{c}\left(\cong C^{n}\right)$ we define a bounded representation of G on \mathscr{S}_{S} by

$$
\left(U_{g}^{\zeta} F\right)(u)=e^{i\langle\zeta, u-1 x\rangle} F\left(k^{-1} u\right), \quad(F \in \mathscr{S}, u \in K),
$$

where $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$. For any $f \in C_{c}^{\infty}(G)$, put

$$
T_{f}(\zeta)=\int_{G} f(g) U_{g}^{\zeta} d g
$$

Then T_{f} is a $\boldsymbol{B}(\mathfrak{S})$-valued function on \hat{H}^{c}. We call T_{f} the FourierLaplace transform of f.

Since K is compact, for each $f \in C_{c}^{\infty}(G)$ there exists a positive number a such that supp $(f) \subset\left\{\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G ;|x| \leqq a, k \in K\right\}$. We denote by r_{f} the greatest lower bound of such a 's. Throughout this section we assume that $f \in C_{c}^{\infty}(G)$ such that $r_{f} \leqq a$ for a fixed $a \in \boldsymbol{R}_{+}$.

Lemma 1. There exists a constant $C \geqq 0$ depending only on f such $t h a t\left\|T_{f}(\zeta)\right\| \leqq C \exp a|\operatorname{Im} \zeta|$.

This lemma is easily verified using the Schwarz's inequality.
A $\boldsymbol{B}(5 \mathfrak{S})$-valued function T on \hat{H}^{c} is called entire analytic if it is analytic at each point of \hat{H}^{c} (for the definition of a Banach space valued analytic function, see [3(a)]). Then it is easy to see that T_{f} is entire analytic and that, for any $\zeta \in \hat{H}^{c}, T_{f}(\zeta)$ leaves the space $C^{\infty}(K)$ invariant.

We denote by λ (resp. μ) the representation of K on $C^{\infty}(G)$ defined by

$$
\lambda(k) f(g)=f\left(k^{-1} g\right) \quad(\text { resp. } \mu(k) f(g)=f(g k))
$$

for $k \in K$ and $g \in G$. We also denote by λ and μ the corresponding representations of the universal enveloping algebra of the Lie algebra \mathfrak{f} of K. We denote by Δ the Casimir operator of K (In case $n=2$, we put $\Delta=-X^{2}$ for a non-zero $X \in \mathfrak{f}$). For any polynomial function p on \hat{H}^{c}, we define a differential operator $p(D)$ on H by $p(D)=p\left(1 / i \cdot \partial / \partial x_{1}\right.$, $\cdots, 1 / i \cdot \partial / \partial x_{n}$). The following lemma is not difficult to prove but plays an important role.

Lemma 2. 1) For any non-negative integers l and m we have $\Delta^{l} T_{f}(\zeta) \Delta^{m}=T \lambda\left(\Delta^{l}\right) \mu\left(\Delta^{m}\right)_{f}(\zeta),\left(\zeta \in \hat{H}^{c}\right)$.
2) For any K-invariant polynomial function p on \hat{H}^{c}, we have $p(\zeta) T_{f}(\zeta)=T_{p^{*}(D) f}(\zeta),\left(\zeta \in \hat{H}^{c}\right)$, where $p^{*}(\zeta)=p(-\zeta)$.

From Lemma 1 and Lemma 2 we have
Proposition 1. For any polynomial function p on \hat{H}^{c} and for any non-negative integers l and m, there exists a constant $C_{p}^{l, m}$ such that $\left\|p(\zeta) \Delta^{l} T_{f}(\zeta) \Delta^{m}\right\| \leqq C_{p}^{l, m} \exp a|\operatorname{Im} \zeta|$.
Finally from the definition of T_{f} we have the following proposition (the functional equations for T_{f}).

Proposition 2. $T_{f}(k \zeta)=R_{k} T_{f}(\zeta) R_{k}^{-1}\left(\zeta \in \hat{H}^{c}, k \in K\right)$.
4. The analogue of the Paley-Wiener theorem.

Theorem. A $\boldsymbol{B}(\mathfrak{S})$-valued function T on \hat{H} is the Fourier transform of $f \in C_{c}^{\infty}(G)$ such that $r_{f} \leqq \alpha(a>0)$ if and only if it satisfies the following conditions:
(I) T can be extended to an entire analytic function on \hat{H}^{c}.
(II) For any $\zeta \in \hat{H}^{c}, T(\zeta)$ leaves the space $C^{\infty}(K)$ invariant. Moreover for any polynomial function p on \hat{H}^{c} and for any non-negative integers l and m, there exists a constant $C_{p}^{l, m}$ such that

$$
\left\|p(\zeta) \Delta^{l} T(\zeta) \Delta^{m}\right\| \leqq C_{p}^{l, m} \exp a|\operatorname{Im} \zeta|
$$

(III) For any $k \in K$,

$$
T(k \zeta)=R_{k} T(\zeta) R_{k}^{-1} \quad\left(\zeta \in \hat{H}^{c}\right)
$$

It is easy to see that the necessity of the theorem follows from the properties of the Fourier-Laplace transform which we mentioned in § 3.

In the following we shall give an outline of a proof of the sufficiency of the theorem. For the sake of brevity we assume that $n \geqq 3$. In case $n=2$ the same method is valid with a slight modification.

Let t be a Cartan subalgebra of \mathfrak{f}. Denote by \mathfrak{f}^{c} (resp. $⿺^{c}$) the complexification of \mathscr{f} (resp. \mathfrak{t}). Fix an order in the dual space of $\sqrt{-1} t$. Let P be the positive root system of \mathfrak{f}^{c} with respect to t^{c}. Let \mathfrak{F} be the set of all dominant integral forms. Then $\Lambda \in \mathscr{F}$ is the highest weight of some irreducible unitary representation of K if and only if it is lifted to a unitary character of the Cartan subgroup. Let \widetilde{F}_{0} be the set of all such Λ 's. For any $\Lambda \in \mathscr{F}_{0}$ we denote by τ_{Λ} the irreducible unitary (matrix) representation of K with the highest weight Λ. Then the mapping $\Lambda \rightarrow \tau_{\Lambda}$ gives the bijection between $\widetilde{\mathscr{r}}_{0}$ and \hat{K}. Let d_{Λ} be the degree of τ_{A}. Then by the Peter-Weyl theorem we can choose a complete orthonormal basis $\left\{\Phi_{j}\right\}_{j \in J}$ of $\mathfrak{S}_{\mathcal{L}}$, consisting of the matrix elements of irreducible unitary representations of K, i.e. $\Phi_{j}=\sqrt{d_{A}}\left(\tau_{A}\right)_{p, q}$ for some $\Lambda \in \mathscr{F}_{0}$ and $p, q=1, \cdots, d_{\Lambda}$. Let J_{Λ} be the set of j in J such that Φ_{j} $=\sqrt{\overline{d_{A}}}\left(\tau_{\Lambda}\right)_{p, q}$ for some $p, q=1, \cdots, d_{A}$. Let (,) be the inner product on the dual space of $\sqrt{-1} \ddagger$ induced by the Killing form and put $|\Lambda|=(\Lambda, \Lambda)^{1 / 2}$. We put as usual $\rho=\frac{1}{2} \sum_{\alpha \in P} \alpha$.

Let us now assume that T is an arbitrary $\boldsymbol{B}(\mathfrak{S})$-valued function on \hat{H} satisfying the conditions (I) \sim (III) in the theorem. We define the kernel function of $T(\zeta)\left(\zeta \in \hat{H}^{c}\right)$ by

$$
\begin{equation*}
K(\zeta ; u, v)=\sum_{i, j \in J}\left(T(\zeta) \Phi_{j}, \Phi_{i}\right) \Phi_{i}(u) \overline{\Phi_{j}(v)},(u, v \in K) \tag{4.1}
\end{equation*}
$$

Lemma 3. For any $\zeta \in \hat{H}^{c}$ the series $\sum_{i, j \in J}\left|\left(T(\zeta) \Phi_{j}, \Phi_{i}\right)\right|$ converges, so that the series of the right side of (4.1) is absolutely convergent and moreover it is uniformly convergent on every compact subset of $\hat{H}^{c} \times K \times K$.

For the proof of this lemma we use the condition (II) and the following facts: For every $\Lambda \in \mathfrak{F}_{0}$ and $j \in J_{\Lambda}$, we have $\left(\Lambda+|\rho|^{2}\right) \Phi_{j}$ $=|\Lambda+\rho|^{2} \Phi_{j}$ and the Weyl's dimension formula $d_{\Lambda}=\prod_{\alpha \in P}(\Lambda+\rho, \alpha) \mid$ $\prod_{\alpha \in P}(\rho, \alpha)$. And moreover, the Dirichlet series $\sum_{\Lambda \in \mathfrak{Y}_{0}}|\Lambda+\rho|^{-s}$ converges if $s>[n / 2]$ (see [3(b)]).

From Lemma 3 we have the following
Corollary. The function $\hat{H}^{c} \times K \times K \ni(\zeta, u, v) \rightarrow K(\zeta ; u, v)$ is of C^{∞} class and entire analytic with respect to ζ.

The condition (II) and the above mentioned facts imply also the
following
Lemma 4. For any polynomial function p on \hat{H}^{c}, there exists a constant C_{p} such that

$$
|p(\zeta) K(\zeta ; u, v)| \leqq C_{p} \exp a|\operatorname{Im} \zeta|, \quad\left(\zeta \in \hat{H}^{c}, u, v \in K\right)
$$

Remark. $K(\zeta ; u, v)$ is rapidly decreasing on the real axis \hat{H}.
Notice that from Lemma 3 the operator $T(\zeta)$ is of trace class (see [3(b)], Lemma 1). Now we define a function f on G by

$$
\begin{equation*}
f(g)=\frac{2}{2^{n / 2} \Gamma(n / 2)} \int_{R^{+}} T r\left(T(a) U_{g-1}^{a}\right) a^{n-1} d a \tag{4.2}
\end{equation*}
$$

By the condition (III), we can prove that

$$
\begin{equation*}
K(k \zeta ; u, v)=K\left(\zeta ; u k^{-1}, v k^{-1}\right) \tag{4.3}
\end{equation*}
$$

for every $\zeta \in \hat{H}^{c}$ and $u, v, k \in K$. The formulae (4.2) and (4.3) imply

$$
f\left(\begin{array}{ll}
k & x \\
0 & 1
\end{array}\right)=\int_{\hat{H}} K\left(\xi ; 1, k^{-1}\right) e^{-i\langle\xi, x\rangle} d \xi
$$

$\left(k \in K, x \in \boldsymbol{R}^{n}\right.$) where $d \xi=(2 \pi)^{-n / 2} d \xi_{1} \cdots d \xi_{n}$.
It follows from Corollary to Lemma 3 and the above remark that f is of class C^{∞}. Making use of the classical Paley-Wiener theorem, from Lemma 4 we can prove that if $|x|>a, f\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right)=0$ for any $k \in K$.

Our final task is to check that $T_{f}=T$, which can be shown by comparing the kernel functions of both operators.

References

[1] L. Ehrenpreis and F. I. Mautner: (a) Ann. of Math., 61, 406-439 (1955); (b) Trans. Amer. Math. Soc., 84, 1-55 (1957).
[2] R. Gangolli: Ann. of Math., 93, 150-165 (1971).
[3] Harish-Chandra: (a) Trans. Amer. Math. Soc., 75, 185-243 (1953) ; (b) ibid., 76, 234-253 (1954).
[4] S. Helgason: Math. Ann., 165, 297-308 (1966).
[5] S. Itô: Nagoya Math. J., 5, 79-96 (1953).
[6] G. W. Mackey: (a) Proc. Nat. Acad. Sci., 35, 537-543 (1949); (b) Ann. of Math., 55, 101-139 (1952).
[7] R. Paley and N. Wiener: Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloquium Publ., New York (1934).
[8] Y. Shimizu: J. Fac. Sci. Univ. of Tokyo, Sec. I, 16, 13-51 (1969).
[9] D. P. Zelobenko: (a) Izv. Akad. Nauk SSSR, Ser. Math., 27, 1343-1394 (1963); (b) ibid., 33, 1255-1295 (1969).

[^0]: *) Department of Applied Mathematics, Osaka University.
 **) Department of Mathematics, Hiroshima University.

