109. An Analogue of the Paley-Wiener Theorem for the Euclidean Motion Group

By Keisaku KUMAHARA*) and Kiyosato OKAMOTO**)

(Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Introduction. The purpose of this paper is to prove an analogue of the Paley-Wiener theorem for the group G of the motions of the *n*-dimensional euclidean space.

Let \hat{G} be the set of all equivalence classes of irreducible unitary representations of G. Let $L_2(G)$ (resp. $L_2(\hat{G})$) be the Hilbert space of all square integrable functions on G (resp. \hat{G}) with respect to the Haar measure (resp. the Plancherel measure). Then the Plancherel theorem states that the Fourier transform gives an isometry of $L_2(G)$ onto $L_2(\hat{G})$ (see § 2).

Let $C_c^{\infty}(G)$ be the space of all infinitely differentiable functions with compact support on G. By an analogue of the Paley-Wiener theorem we mean the characterization of the image of $C_c^{\infty}(G)$ by the Fourier transform.

As a number of articles ([1], [2], [4], [7]–[9] and etc.) indicate, in order to attack the problem one has to consider the Fourier-Laplace transforms of $C_c^{\infty}(G)$ which are (operator-valued) entire analytic functions "of exponential type" on a certain complex manifold. In general, \hat{G} is not a C^{∞} manifold but the space of all orbits in a real analytic manifold by actions of the "Weyl group" which gives equivalence relations. The Fourier-Laplace transform T_f of an element f of $C_c^{\infty}(G)$ is defined on the "complexification" of this real analytic manifold and satisfies certain functional equations derived from the actions of the Weyl group.

Detailed proofs will appear elsewhere.

2. Preliminaries. Let G be the group of motions of n-dimensional euclidean space \mathbb{R}^n . Then G is realized as the group of $(n+1) \times (n+1)$ -matrices of the form $\binom{k \ x}{0 \ 1}$, $(k \in SO(n), x \in \mathbb{R}^n)$. Let K and H be the closed subgroups of the elements $\binom{k \ 0}{0 \ 1}$, $(k \in SO(n))$ and $\binom{1 \ x}{0 \ 1}$, $(x \in \mathbb{R}^n)$, respectively. Then H is an abelian normal subgroup of G and G is the semidirect of H and K. We normalize the Harr measure dg on G such that dg = dxdk, where $dx = (2\pi)^{-n/2}dx_1 \cdots dx_n$

^{*)} Department of Applied Mathematics, Osaka University.

^{**)} Department of Mathematics, Hiroshima University.

and dk is the normalized Haar measure on K. Let $\mathfrak{H} = L_2(K)$ be the Hilbert space of all square integrable functions on K. We denote by $B(\mathfrak{H})$ the Banach space of all bounded linear operators on \mathfrak{H} .

If G_1 is a subgroup of G, we denote by \hat{G}_1 the set of all equivalence classes of irreducible unitary representations of G_1 . For an irreducible unitary representation σ of G_1 , we denote by $[\sigma]$ the equivalence class which contains σ . Denote by \langle , \rangle the euclidean inner product on \mathbb{R}^n . Then we can identify \hat{H} with \mathbb{R}^n so that the value of $\hat{\xi} \in \hat{H}$ at $x \in H$ is $e^{i\langle \xi, x \rangle}$. For simplicity, we identify $k \in SO(n)$ with $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \in K$ and $x \in \mathbb{R}^n$ with $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in H$. Because H is normal, K acts on H, and therefore on \hat{H} naturally: $\langle k\xi, x \rangle = \langle \xi, k^{-1}x \rangle$. Let K_{ξ} be the isotropy subgroup of Kat $\xi \in \hat{H}$. If $\xi \neq 0$, K_{ξ} is isomorphic to SO(n-1).

The irreducible unitary representations of G were enumerated and constructed by G. W. Mackey [6] and S. Itô [5] as follows. We fix $\xi \in \hat{H}$. Let χ_{σ} and d_{σ} be the character and the degree of $[\sigma] \in \hat{K}_{\xi}$, respectively. Let R be the right regular representation of K. If $\sigma(k) = (\sigma_{ij}(k))(1 \leq i, j \leq d_{\sigma})$, we put

 $P^{\sigma} = d_{\sigma} \int_{K_{\varepsilon}} \overline{\chi_{\sigma}(m)} R_{m} d_{\varepsilon} m$

$$P_i^{\sigma} = d_{\sigma} \int_{K_{\xi}} \overline{\sigma_{ii}(m)} R_m d_{\xi} m,$$

where $d_{\xi}m$ is the normalized Haar measure on K_{ξ} . Then P^{σ} and P_{i}^{σ} are both orthogonal projections of \mathfrak{F} . Put $\mathfrak{F}^{\sigma} = P^{\sigma}\mathfrak{F}$ and $\mathfrak{F}_{i}^{\sigma} = P_{i}^{\sigma}\mathfrak{F}$. We denote by U^{ξ} the unitary representation of G induced by ξ , i.e. for $g = \begin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} \in G$

$$(U_a^{\varepsilon}F)(u) = e^{i\langle \varepsilon, u^{-1}x \rangle}F(k^{-1}u), \qquad (F \in \mathfrak{H}, u \in K).$$

The subspaces $\mathfrak{H}_{i}^{\sigma}(1 \leq i \leq d_{\sigma})$ are invariant under U^{ε} and the representations of G induced on $\mathfrak{H}_{i}^{\sigma}$ under U^{ε} are equivalent for all $1 \leq i \leq d_{\sigma}$. We fix one of them and denote it by $U^{\varepsilon,\sigma}$. Two representations $U^{\varepsilon,\sigma}$ and $U^{\varepsilon'\sigma'}$ are equivalent if and only if there exists an element $k \in K$ such that $\hat{\xi}' = k\hat{\xi}$ and $[\sigma] = [\sigma'^{k}]$ where $\sigma'^{k}(m) = \sigma'(kmk^{-1})$, $(m \in K_{\varepsilon})$.

First we assume that $\xi \neq 0$. Then $U^{\xi,\sigma}$ is irreducible and every infinite dimensional irreducible unitary representation is equivalent to one of $U^{\xi,\sigma}$, $(\xi \neq 0, [\sigma] \in \hat{K}_{\xi})$. Since $\mathfrak{H} = \bigoplus_{[\sigma] \in \hat{K}_{\xi}} \mathfrak{H}^{\sigma}$ and $\mathfrak{H}^{\sigma} = \bigoplus_{i=1}^{d_{\sigma}} \mathfrak{H}^{\sigma}_{i}$, we have

$$U^{\mathfrak{e}} \cong \bigoplus_{[\sigma] \in \hat{K}_{\mathfrak{e}}} (\underbrace{U^{\mathfrak{e},\sigma} \oplus \cdots \oplus U^{\mathfrak{e},\sigma}}_{d_{\sigma} \text{ times}}).$$
(2.1)

Next we assume that $\xi = 0$. Then $U^{\xi,\sigma}$ is reducible and $K_{\xi} = K$. For any irreducible unitary representation σ of K we define a finite

dimensional irreducible unitary representation U^{σ} of G by $U_{\sigma}^{\sigma} = \sigma(k)$ where $g = \begin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} \in G$. Then we have $\underbrace{U^{0,\sigma} \cong U^{\sigma} \oplus \cdots \oplus U^{\sigma}}_{d_{\sigma} \text{ times}} d_{\sigma} \text{ times}$ and U^{0} $\cong \bigoplus_{[\sigma] \in \hat{K}} U^{0,\sigma}$. Moreover every finite dimensional irreducible unitary representation of G is equivalent to one of U^{σ} , $([\sigma] \in \hat{K})$.

We denote by $(\hat{G})_{\infty}$ (resp. $(\hat{G})_{0}$) the set of all equivalence classes of infinite (resp. finite) dimensional irreducible unitary representations of G.

Let R_{\perp} be the set of all positive numbers and let M be the subgroup

of the elements $egin{pmatrix} 1 & 0 & 0 \ 0 & m & 0 \ 0 & 0 & 1 \end{pmatrix}$, $(m \in SO(n-1))$. Then for any $\xi \in \hat{H}$ of the

form ${}^{t}(a, 0, \dots, 0)$, $a \in \mathbf{R}_{+}$, we have $K_{\xi} = M$. It follows from the above results that $(\hat{G})_{\infty}$ can be identified with $\mathbf{R}_{+} \times \hat{M}$. It can be proved that the Plancherel measure of $(\hat{G})_0$ is zero and the Plancherel measure on $(\hat{G})_{\infty}$ is explicitly expressed as $(2/2^{n/2}\Gamma(2/n))a^{n-1}da\otimes d_{\sigma}$. For any $f \in C^{\infty}_{c}(G)$, we put

$$T_f(\xi,\sigma) = \int_{\sigma} f(g) U_g^{\xi,\sigma} dg \qquad (\xi \neq 0, [\sigma] \in \hat{K}_{\xi}).$$

For $\xi = {}^{t}(a, 0, \dots, 0)$, $(a \in \mathbf{R}_{+})$, we write briefly $T_{f}(\xi, \sigma) = T_{f}(a, \sigma)$. Then the following Plancherel formula holds:

$$\int_{G} |f(g)|^2 dg = \frac{2}{2^{n/2} \Gamma(n/2)} \sum_{[\sigma] \in \hat{M}} d_{\sigma} \int_{\mathbf{R}_+} ||T_f(a,\sigma)||_2^2 a^{n-1} da, \qquad (2.2)$$

where $\| \|_2$ denotes the Hilbert-Schmidt norm.

For any $f \in C^{\infty}_{c}(G)$ we put

$$T_{f}(\xi) = \int_{\mathcal{G}} f(g) U_{g}^{\xi} dg.$$

The space, on which $T_f(\xi, \sigma)$ operates, depends not only on σ but also on ξ . However $T_t(\xi)$ is an operator on a fixed Hilbert space \mathfrak{H} , so that we can consider the $B(\mathfrak{H})$ -valued function T_f . We shall call T_f the Fourier transform of f. As above we write $T_f(\xi) = T_f(a)$ for $\hat{\xi} = {}^{t}(a, 0, \dots, 0), (a \in \mathbf{R}_{+})$. Then it follows from (2.1) and (2.2) that

$$\int_{g} |f(g)|^{2} dg = \frac{2}{2^{n/2} \Gamma(n/2)} \int_{R+} ||T_{f}(a)||_{2}^{2} a^{n-1} da.$$

3. Definition and some properties of the Fourier-Laplace transform. For each $\zeta \in \hat{H}^c (\cong C^n)$ we define a bounded representation of G on \mathfrak{G} by

$$(U_g^{\zeta}F)(u) = e^{i\langle \zeta, u^{-1}x \rangle}F(k^{-1}u), \qquad (F \in \mathfrak{H}, u \in K),$$

where $g = egin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} \in G.$ For any $f \in C^\infty_c(G)$, put $T_f(\zeta) = \int_{a} f(g) U_g^{\zeta} dg.$

487

Then T_f is a $B(\mathfrak{F})$ -valued function on \hat{H}^c . We call T_f the Fourier-Laplace transform of f.

Since K is compact, for each $f \in C_c^{\infty}(G)$ there exists a positive number a such that supp $(f) \subset \left\{ \begin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} \in G; |x| \leq a, k \in K \right\}$. We denote by r_f the greatest lower bound of such a's. Throughout this section we assume that $f \in C_c^{\infty}(G)$ such that $r_f \leq a$ for a fixed $a \in \mathbf{R}_+$.

Lemma 1. There exists a constant $C \ge 0$ depending only on f such that $||T_f(\zeta)|| \le C \exp a |\operatorname{Im} \zeta|$.

This lemma is easily verified using the Schwarz's inequality.

A $B(\mathfrak{H})$ -valued function T on \hat{H}^c is called entire analytic if it is analytic at each point of \hat{H}^c (for the definition of a Banach space valued analytic function, see [3(a)]). Then it is easy to see that T_f is entire analytic and that, for any $\zeta \in \hat{H}^c$, $T_f(\zeta)$ leaves the space $C^{\infty}(K)$ invariant.

We denote by λ (resp. μ) the representation of K on $C^{\infty}(G)$ defined by

 $\lambda(k)f(g) = f(k^{-1}g) \qquad (\text{resp. } \mu(k)f(g) = f(gk))$

for $k \in K$ and $g \in G$. We also denote by λ and μ the corresponding representations of the universal enveloping algebra of the Lie algebra \mathfrak{t} of K. We denote by Δ the Casimir operator of K (In case n=2, we put $\Delta = -X^2$ for a non-zero $X \in \mathfrak{t}$). For any polynomial function p on \hat{H}^c , we define a differential operator p(D) on H by $p(D) = p(1/i \cdot \partial/\partial x_1, \dots, 1/i \cdot \partial/\partial x_n)$. The following lemma is not difficult to prove but plays an important role.

Lemma 2. 1) For any non-negative integers l and m we have $\Delta^{l}T_{f}(\zeta)\Delta^{m} = T\lambda(\Delta^{l})\mu(\Delta^{m})_{f}(\zeta), (\zeta \in \hat{H}^{c}).$

2) For any K-invariant polynomial function p on \hat{H}^c , we have $p(\zeta)T_f(\zeta) = T_{p^*(D)f}(\zeta)$, $(\zeta \in \hat{H}^c)$, where $p^*(\zeta) = p(-\zeta)$.

From Lemma 1 and Lemma 2 we have

Proposition 1. For any polynomial function p on \hat{H}^c and for any non-negative integers l and m, there exists a constant $C_p^{l,m}$ such that

 $\|p(\zeta)\varDelta^{l}T_{f}(\zeta)\varDelta^{m}\| \leq C_{p}^{l,m} \exp a |\operatorname{Im} \zeta|.$

Finally from the definition of T_f we have the following proposition (the functional equations for T_f).

Proposition 2. $T_t(k\zeta) = R_k T_t(\zeta) R_k^{-1}(\zeta \in \hat{H}^c, k \in K).$

4. The analogue of the Paley-Wiener theorem.

Theorem. A $B(\mathfrak{F})$ -valued function T on \hat{H} is the Fourier transform of $f \in C_c^{\infty}(G)$ such that $r_f \leq a(a>0)$ if and only if it satisfies the following conditions:

(I) T can be extended to an entire analytic function on \hat{H}^c .

(II) For any $\zeta \in \hat{H}^c$, $T(\zeta)$ leaves the space $C^{\infty}(K)$ invariant. Moreover for any polynomial function p on \hat{H}^c and for any non-negative integers l and m, there exists a constant $C_p^{l,m}$ such that No. 5] Analogue of Paley-Wiener Theorem for Euclidean Motion Group 489

(III) For any
$$k \in K$$
,
 $T(k\zeta) = R_k T(\zeta) R_k^{-1}$ $(\zeta \in \hat{H}^c)$.

It is easy to see that the necessity of the theorem follows from the properties of the Fourier-Laplace transform which we mentioned in § 3.

In the following we shall give an outline of a proof of the sufficiency of the theorem. For the sake of brevity we assume that $n \ge 3$. In case n=2 the same method is valid with a slight modification.

Let t be a Cartan subalgebra of f. Denote by f^c (resp. t^c) the complexification of t (resp. t). Fix an order in the dual space of $\sqrt{-1}$ t. Let P be the positive root system of \mathfrak{k}^c with respect to \mathfrak{k}^c . Let \mathfrak{K} be the set of all dominant integral forms. Then $\Lambda \in \mathfrak{F}$ is the highest weight of some irreducible unitary representation of K if and only if it is lifted to a unitary character of the Cartan subgroup. Let \mathfrak{F}_0 be the set of all such Λ 's. For any $\Lambda \in \mathfrak{F}_0$ we denote by τ_{Λ} the irreducible unitary (matrix) representation of K with the highest weight Λ . Then the mapping $\Lambda \rightarrow \tau_A$ gives the bijection between \mathfrak{F}_0 and \hat{K} . Let d_A be the degree of τ_A . Then by the Peter-Weyl theorem we can choose a complete orthonormal basis $\{\Phi_j\}_{j \in J}$ of \mathfrak{H} , consisting of the matrix elements of irreducible unitary representations of K, i.e. $\Phi_j = \sqrt{d_A} (\tau_A)_{p,q}$ for some $\Lambda \in \mathfrak{F}_0$ and $p, q=1, \cdots, d_{\Lambda}$. Let J_{Λ} be the set of j in J such that Φ_j $=\sqrt{d_{A}}(\tau_{A})_{p,q}$ for some $p, q=1, \dots, d_{A}$. Let (,) be the inner product on the dual space of $\sqrt{-1}$ t induced by the Killing form and put $|\Lambda| = (\Lambda, \Lambda)^{1/2}$. We put as usual $\rho = \frac{1}{2} \sum_{\alpha \in P} \alpha$.

Let us now assume that T is an arbitrary $B(\mathfrak{G})$ -valued function on \hat{H} satisfying the conditions (I)~(III) in the theorem. We define the kernel function of $T(\zeta)(\zeta \in \hat{H}^c)$ by

$$K(\zeta; u, v) = \sum_{i, j \in J} (T(\zeta) \Phi_j, \Phi_i) \Phi_i(u) \overline{\Phi_j(v)}, (u, v \in K)$$
(4.1)

Lemma 3. For any $\zeta \in \hat{H}^c$ the series $\sum_{i,j\in J} |(T(\zeta)\Phi_j, \Phi_i)|$ converges, so that the series of the right side of (4.1) is absolutely convergent and moreover it is uniformly convergent on every compact subset of $\hat{H}^c \times K \times K$.

For the proof of this lemma we use the condition (II) and the following facts: For every $\Lambda \in \mathfrak{F}_0$ and $j \in J_A$, we have $(\Delta + |\rho|^2)\Phi_j = |\Lambda + \rho|^2 \Phi_j$ and the Weyl's dimension formula $d_A = \prod_{\alpha \in P} (\Lambda + \rho, \alpha) / \prod_{\alpha \in P} (\rho, \alpha)$. And moreover, the Dirichlet series $\sum_{A \in \mathfrak{F}_0} |\Lambda + \rho|^{-s}$ converges if s > [n/2] (see [3(b)]).

From Lemma 3 we have the following

Corollary. The function $\hat{H}^c \times K \times K \ni (\zeta, u, v) \rightarrow K(\zeta; u, v)$ is of C^{∞} class and entire analytic with respect to ζ .

The condition (II) and the above mentioned facts imply also the

following

Lemma 4. For any polynomial function p on \hat{H}^c , there exists a constant C_p such that

 $|p(\zeta)K(\zeta\,;\,u,v)| \leq C_p \exp a |\operatorname{Im} \zeta|, \qquad (\zeta \in \hat{H}^c, u, v \in K).$

Remark. $K(\zeta; u, v)$ is rapidly decreasing on the real axis \hat{H} .

Notice that from Lemma 3 the operator $T(\zeta)$ is of trace class (see [3(b)], Lemma 1). Now we define a function f on G by

$$f(g) = \frac{2}{2^{n/2} \Gamma(n/2)} \int_{\mathbf{R}^+} Tr(T(a) U^a_{g^{-1}}) a^{n-1} da.$$
(4.2)

By the condition (III), we can prove that

$$K(k\zeta; u, v) = K(\zeta; uk^{-1}, vk^{-1})$$
(4.3)

for every $\zeta \in \hat{H}^c$ and $u, v, k \in K$. The formulae (4.2) and (4.3) imply $f \begin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} = \int_{\hat{H}} K(\hat{\xi}; 1, k^{-1}) e^{-i\langle \xi, x \rangle} d\hat{\xi}$

 $(k \in K, x \in \mathbb{R}^n)$ where $d\xi = (2\pi)^{-n/2} d\xi_1 \cdots d\xi_n$.

It follows from Corollary to Lemma 3 and the above remark that f is of class C^{∞} . Making use of the classical Paley-Wiener theorem, from Lemma 4 we can prove that if |x| > a, $f\begin{pmatrix} k & x \\ 0 & 1 \end{pmatrix} = 0$ for any $k \in K$.

Our final task is to check that $T_f = T$, which can be shown by comparing the kernel functions of both operators.

References

- [1] L. Ehrenpreis and F. I. Mautner: (a) Ann. of Math., 61, 406-439 (1955);
 (b) Trans. Amer. Math. Soc., 84, 1-55 (1957).
- [2] R. Gangolli: Ann. of Math., 93, 150-165 (1971).
- [3] Harish-Chandra: (a) Trans. Amer. Math. Soc., 75, 185-243 (1953); (b) ibid., 76, 234-253 (1954).
- [4] S. Helgason: Math. Ann., 165, 297-308 (1966).
- [5] S. Itô: Nagoya Math. J., 5, 79-96 (1953).
- [6] G. W. Mackey: (a) Proc. Nat. Acad. Sci., 35, 537-543 (1949); (b) Ann. of Math., 55, 101-139 (1952).
- [7] R. Paley and N. Wiener: Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloquium Publ., New York (1934).
- [8] Y. Shimizu: J. Fac. Sci. Univ. of Tokyo, Sec. I, 16, 13-51 (1969).
- [9] D. P. Zelobenko: (a) Izv. Akad. Nauk SSSR, Ser. Math., 27, 1343–1394 (1963); (b) *ibid.*, 33, 1255–1295 (1969).