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106. An Operator-Valued Stochastic Integral

By D. KANNAN® and A. T. BHARUCHA-REID*#®
Center for Research in Probability
Wayne State University, Detroit, Michigan 48202

(Comm. by Kinjiré KUNUGI, M. J. A., May 12, 1971)

1. Introduction. In this paper we define a stochastic integral of
the form

j E(t, w)dw(t, ) (1)

where £(t, w) is a second order Hilbert space-valued random function
and w(t, w) is a Hilbert space-valued Brownian motion or Wiener
process. The stochastic integral to be defined is operator-valued; in
particular, it is a function from a probability space into the space of
Schmidt class operators on a Hilbert space. Hilbert space-valued
stochastic integrals of operator-valued functions have been studied by
several authors (cf., Mandrekar and Salehi [7], and Vakhaniya and
Kandelski [10]). We first introduce some definitions and concepts which
will be used in the development of the integral.

Let (2, A, 1) be a complete probability space, and let § be a real
separable Hilbert space with inner product <{.,->. A mapping x: 2
—§ is said to be a random element in &, or an H-valued random vari-
able, if for each ye 9, <x(w),y> is a real-valued random variable.
Similarly, a mapping L: 2—PB(9) (where B(9) is the Banach algebra
of endomorphisms of §) is said to be a random operator if, for every
z,y e 9, <L(w)x,y) is a real-valued random variable.

Let # and y be two given elements in $. The tensor product of x
and y, written *®y, is an endomorphism in § whose defining equation
is @®@Wh=<h,y>x,hec . A simple consequence of this definition is
(2, QYD (@,RY,) =2, Y (X, Qy,). We refer to Schattan [8] for a discus-
sion of the operator x®y and its properties. Now let z(w) and y(w)
be two $-valued random variables; and consider the tensor product
2(w)@y(w). Falb [3] (cf. also [5]) has shown that the operator-valued
function 2(w)@y(w) is measurable; i.e., it is a random operator. Falb
established the measurability of x(w)Q@y(w) using open sets; however,
it follows easily from the definitions of a random operator and the
tensor product operator.

An $-valued random function {w({, w),te<[a,b]} is said to be a
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Brownian motion or Wiener process in © if (i) &{w(t, w)}=0 for all
t ¢ [a, D], (ii) the increments of w(t, w) over disjoint intervals are inde-
pendent, (iii) w(t, ) is a.s. continuous as a function of ¢, (iv) &{||w(t, w)
—w(s, w) ||f§,} = EKw(t, w) — w(s, ), w(t, ) — w(s, w)>}=|t — s|, and (v)
Ew(t,, w)—w(s,, ), Uw(t,, w)—w(s,, )>}=0 for s,<t,<s,<t, and
Uec B).

A random function &(t, w) €  is said to be nonanticipative of the
process w(t, w) if, for r,s,t ¢ [a, b]l, r<s<t, &(r, w) and w(t, @) —w(s, w)
are independent. Let H denote the Hilbert space of the equivalence
classes of second order random functions &(t, w); that is for every
te[a, bl, £(t, w) is a second order random element in §. The norm in

H is |§||lz= (j:é’{ll &, w)l\"’@}dt> 1/2. We remark that the class of all

random functions in H nonanticipative of w(t, w) is a linear manifold ;
and we denote its closure by H,. Also, the set of all simple random
functions nonanticipative of w(t, w) is dense in H,,.

Finally, we need the notion of an operator of Schmidt class (cf.,
Dunford and Schwartz [2]). An operator A on § is said to be a Schmidt
class operator if, for a complete orthonormal sequence {e;} in §,|A|2
=>2,||Ae;|’<oo. The collection [oc] of Schmidt class operators is a
Hilbert space with inner product (4 |B)=>;, {Ae;, Be,> and norm |[-|,,
the so-called Schmidt norm.

2. Definition of the integral. Some properties. In defining the
stochastic integral, and in the study of its properties, we restrict our
attention to random functions &£(¢, w) in H,,. We first define the integral
for simple random functions, and then extend it to all random
functions in H,,.

Let £(¢, w) be a simple random function ; that is, if a=%,<t,<-.-
<t,_<t,=b, then

_ §(t, w), telt,, 179%Y)
st @)= 0, otherwise.
For a simple random function &(¢, w) the integral is defined by

"&(t, w)dw(t, w>=’fz=1‘:$(ti, ORMw(t11, ) —w(ty, )], (2)

Let I(w) denote the integral defined by (2). Clearly I: 2—[oc]; and
I(w) is a random operator of Schmidt class on §. Using elementary
properties of the tensor product operator defined earlier, and properties
of the processes £(t, w) and w(t, ), we obtain the following result for
the integral defined by (2).

Lemma 1. (i) For any two real numbers a, and a,, and for
simple random functions §,(t, ) and &,(t, w), we have

r [a'151(t, )+ azgz(t’ w)ldw(t, w)
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=an £.(t, wdw(t, w)+a, j £t, w)dw(t, ).
(ii) For a simple random function §(t, w) € H,, §{I(w)}=0, in the
sense that <E{I(w)}x, y>=0 for every x,y € .
(iii) For a simple random function £(t, w) € H,,

&(|[ et wautt, )} =16, )
(iv) Forany Ue B(©) and any simple random function §(t, w)eH,,

j " UE(t, w)dw(t, w)= U_[b £(t, w)dw(t, ).

(v) Tr [I(w)]:jZ:@(ti, @), W(ts,, @) —w(ts, @), and E(Tr ()]}
=0.

Using (iii) of the above lemma, together with the following result,
definition (2) can be extended to all £(¢, w) € H,.

Lemma 2. Let {§,(t, w)} be a Cauchy sequence of simple random
functions in H,. Then the corresponding integrals {I,,} form a Cauchy
sequence in L2, [ac)).

Let £(¢, w) ¢ H,. Then there exists a sequence &,(t, w) of simple
random functions converging to &£(f,w) in H,. Corresponding to

{£.(t, w)}, the integrals I,,(a)):J‘b £, w)dw(, w) form a Cauchy
sequence in the Hilbert space LZ(QT [oc]). Thus, using the L2, [oc])
convergence, the integral r Et, w)dw(t, w), for all £&(t, w) ¢ H,, is de-
fined by ’

b

j " e, wdwt, )=Lim. | &, w)dw(t, o). (3)

n—wo

Property (iii) of Lemma 1 defined an isometry from the simple random
functions into L,(2,[cc]); and since the simple random functions are

b
dense in H,, the mapping $—>j Edw extends by continuity to an iso-

metry. Thus the definition of the stochastic integral can be formulated
as follows:

Theorem 1. There is a unique isometric operator from H, into
L,(2,[oc)), denoted by

£t, w)— j E(t, w)dw(t, ).

The above result states that property (iii) of Lemma 1 holds for
any &(t,w)e H,. By passing to the limit, properties (i) and (i) of
Lemma 1 also hold for any &(¢, ) € H,,.

Now, consider the operator-valued process m(t, w) defined by

mt, w)= j “et, wdwt, @),  t>a. (4)
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We state the following result, which is an analogue of a well-known
property of the It6-Doob integral (cf., Doob [1], p. 444).

Theorem 2. If &(t, w) € H,,, then the process m(t, w) defined by
(4) is an operator-valued martingale.

3. The covariance operator of the integral. Consider the
measurable space (9, B) where $ is a real separable Hilbert space and
B is the g-algebra of Borel subsets of . Let x(w) denote a H-valued
random variable; and let v, denote the probability measure on & in-
duced by ¢ and =, that is v, = pox™!, or v, (B)= p(x~(B)) for all B e A.
Let M(9) denote the space of all probability measures on §; and let

vy e M(9) be such that 6’,{]]90||2}=j|190||2 dv<oco. Then the covariance
operator S of defined by the equation

(89, 9>=[<, 9yav(p) (5)

(cf. Grenander [4], Chap. 6).
As a random element in [oc], the integral I(w) induces a probability
measure y; on the measurable space ([ocl, F), where <& is the g-algebra
of Borel subsets of [oc]; and y;= poI~'. Now, if v; € M([oc]) is such that

I\lxl]zdv ;< oo ; then it follows from (5) that the covariance operator S;
of the integral I(w) is defined by

(S, 3y =<y, 2 dvrw) (6)

The Hilbert space L,(2,[oc]) is the tensor product of L,(£2) and

[ocl; that is L,(2, [ac]):Lz(.Q)®[oc] (cf., Umegaki and Bharucha-Reid

[9D). Using tensor product methods, the authors [6] have obtained

several representation theorems for covariance operators, which when
applied to S; give the following results.

Theorem 3. The covariance operator S; of the stochastic integral
I(w) admits the representation

(S;A| B)=L Tr [{(@)®H(@)(ASB)d,
where A, B e [ocl.

Theorem 4. If I(w) ¢ L(D®Ilocl (the algebraic tensor product of
L,(2) and [oc)), then S; admits the representation

(S, A|A)= % jz (2:(0), Y @)(A, | A)A | A)),

where A e [ocl, (-, -) is the inner product in Ly(Q), and I(w)=> ", x(w)
QA =", x(w)A;, with x,e L(2),A;clocl, I<i<m.
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