98. On Distributive Sublattices of a Lattice^{*)}

By Saburo TAMURA Yamaguchi University

(Comm. by Kenjiro Shoda, M. J. A., May 12, 1971)

In his note [1], B. Jónsson gave a necessary and sufficient condition that the sublattice generated by a subset H of a modular lattice should be distributive. This condition can be proved to be equivalent to the statement that $(a \cap c) \cup (b \cap c) = (a \cup b) \cap c$ for any a, b, c in H_1 , where H_1 consists of all elements which can be written as a finite join or a finite meet of elements in H. The main purpose of this paper is to prove that in order for the sublattice generated by a subset H of a lattice to be distributive it is a necessary and sufficient condition that $(a \cap c) \cup (b \cap c)$ $= (a \cup b) \cap c$ for any a, b, c in H_2 , where H_2 consists of all elements which can be written as a finite join or a finite meet of elements in H_1 .

Let $\langle H \rangle$ be a sublattice generated by a nonempty subset H of a lattice L. The finite join $\bigcup_{i=1}^{m} x_i$ of elements x_1, x_2, \dots, x_m in H is called a \cup -element in $\langle H \rangle$. The set of all \cup -elements in $\langle H \rangle$ is denoted by H_{\cup} and dually the set of all \cap -elements in $\langle H \rangle$ by H_{\cap} . One of \cup - or \cap -elements in $\langle H \rangle$ is said to be a 1st-element in $\langle H \rangle$, and the set of all 1st-elements in $\langle H \rangle$ is denoted by H_1 . The finite join $\bigcup_{i=1}^{m} x_i$ of \cap elements x_1, x_2, \dots, x_m in $\langle H \rangle$ is called a $\cup \cap$ -element in $\langle H \rangle$. The set of all $\cup \cap$ -elements in $\langle H \rangle$ is denoted by $H_{\cup \cap}$ and dually the set of all $\cap \cup$ -elements in $\langle H \rangle$ by $H_{\cap \cup}$. One of $\cup \cap$ - or $\cap \cup$ -elements in $\langle H \rangle$ is said to be a 2nd-element in $\langle H \rangle$, and the set of all 2nd-elements in $\langle H \rangle$ is denoted by H_2 .

Two modular laws will be denoted by

 μ : $(a \cap c) \cup (b \cap c) = ((a \cap c) \cup b) \cap c$, and

 $\mu^*: (a \cup c) \cap (b \cup c) = ((a \cup c) \cap b) \cup c.$

Four distributive laws will be denoted by

 $\delta: (a \cap c) \cup (b \cap c) = (a \cup b) \cap c,$

- $\delta^*: (a \cup c) \cap (b \cup c) = (a \cap b) \cup c,$
- $\Delta^*: \quad \bigcap_{i=1}^m (x_i \cup y) = (\bigcap_{i=1}^m x_i) \cup y.$

Theorem 1. Let $\langle H \rangle$ be the sublattice generated by a nonempty subset H of a lattice L. In order that $\langle H \rangle$ be distributive it is necessary and sufficient that Δ holds for any $x_i \in H$ $(i=1, 2, \dots, m)$ and any $y \in H_{\Omega}$ (or briefly Δ holds for H), and μ and μ^* hold for any $a, b, c \in H_2$

^{*)} Dedicated to Professor K. Asano on his sixtieth birthday.

(or briefly μ and μ^* hold for H_2).

Proof. This condition is obviously necessary. To prove that it is also sufficient, we first show that whenever X is any subset of L and μ and μ^* hold for X_2 , Δ holds for X if and only if Δ^* holds for X. Δ^* clearly holds for m=1. Assuming that it holds for m=k, we consider the case in which m=k+1. Let $y=\bigcup_{j=1}^m y_j$, where $y_j \in H$. Then

$$\begin{split} & \bigcap_{i=1}^{m} (x_i \cup y) \\ &= (x_1 \cup y) \cap \bigcap_{i=2}^{m} (x_i \cup y) \\ &= (x_1 \cup y) \cap \left(\left(\bigcap_{i=2}^{m} x_i \right) \cup y \right) \cdots \qquad \text{(by the hypothesis)} \\ &= \left(\left(x_1 \cup \bigcup_{j=1}^{n} y_j \right) \cap \bigcap_{i=1}^{m} x_i \right) \cup y \cdots \qquad \text{(by } \mu^* \text{ for } X_2) \\ &= \left(x_1 \cap \bigcap_{i=2}^{m} x_i \right) \cup \bigcup_{j=1}^{n} \left(y_j \cap \bigcap_{i=2}^{m} x_i \right) \cup y \cdots \qquad \text{(by } \Delta \text{ for } X) \\ &= \left(\bigcap_{i=1}^{m} x_i \right) \cup \left(y \cap \bigcap_{i=2}^{m} x_i \right) \cup y \cdots \qquad \text{(by } \Delta^* \text{ for } X) \\ &= \left(\bigcap_{i=1}^{m} x_i \right) \cup y. \end{split}$$

Thus Δ^* is implied by Δ . By dualizing the proof we obtain that Δ is implied by Δ^* .

Now suppose H satisfies the condition of the theorem. Let S be the family of all subsets X of L satisfying the following three conditions:

- (a) $X \supseteq H$,
- (b) \varDelta and \varDelta^* hold for X, and
- (c) μ and μ^* hold for X_2 .

S is, obviously, partly ordered by the set inclusion. Then it is easily verified that the set union of any chain of sets belonging to S also has the properties (a), (b) and (c). From this, by applying the Zorn's lemma, S has at least one maximal element Z. Thus $Z \supseteq H, \Delta$ and Δ^* hold for Z and μ and μ^* hold for Z_2 .

Suppose $u, v \in Z$ and let $Y = Z \vee \{u \cap v\}$. (\vee is the set union.) Clearly, $Y \supseteq H$. In order to show that μ and μ^* hold for any $a, b, c \in Y_2$, we shall prove that $a \in Y_2$ implies $a \in Z_2$.

- (1) The case in which $a \in Y_{\cup \cap}$:
- $Y_{\cap} = Z_{\cap}$, so $a \in Y_{\cup \cap} = Z_{\cup \cap} \subseteq Z_2$.
- (2) The case in which $a \in Y_{\cap \cup}$:

In this case a is represented as $a = \bigcap_{i=1}^{m} x_i$, where $x_i = \bigcup_{j(i)=1}^{n(i)} y_{j(i)} \in Y_{\cup}$ and $y_{j(i)} \in Y$. If none of the elements $y_{j(i)}$ equal $u \cap v$, then $a \in Z_2$. If some $y_{j(i)}$ equals $u \cap v$, then there exists x'_i such that $x_i = (u \cap v) \cup x'_i$, $x'_i = \bigcup_{j(i)=1}^{n'(i)} y'_{j(i)} \in Y_{\cup}$ and none of $y'_{j(i)}$ equal $u \cap v$. Thus $x'_i \in Z_{\cup}$.

No. 5]

 $\begin{aligned} x_i &= (u \cap v) \cup x'_i \\ &= (u \cup x'_i) \cap (v \cup x'_i) \cdots \qquad \text{(by } \varDelta^* \text{ for } Z) \end{aligned}$

Since $u \cup x'_i, v \cup x'_i \in Z_{\cup}$, each $x_i \in Z_{\cap \cup}$. Therefore $a = \bigcap_{i=1}^m x_i \in Z_{\cap \cup} \subseteq Z_2$.

Now we shall prove that μ and μ^* hold whenever $a, b, c \in Y_2$. If $a, b, c \in Y_2$ then $a, b, c \in Z_2$. Hence μ and μ^* hold for $a, b, c \in Z_2$, so also for $a, b, c \in Y_2$.

Next, in order to show that \varDelta holds whenever $x_i \in Y$ and $y \in Y_{\cap}$, we need only consider the essential case in which $x_2, \dots, x_m \in Z, x_1 = u \cap v$ and $y \in Z_{\cap}$, since $Z_{\cap} = Y_{\cap}$. Let $y = \bigcap_{j=1}^{n} y_j$, where $y_j \in Z$. Then we have

$$\begin{split} & \underset{i=1}{\overset{m}{\longrightarrow}} (x_i \cap y) \\ &= (x_1 \cap y) \cup \bigcup_{i=2}^{m} (x_i \cap y) \\ &= (x_1 \cap y) \cup \left(\left(\bigcup_{i=2}^{m} x_i \right) \cap y \right) \cdots \quad (\text{by } \Delta \text{ for } Z) \\ &= \left(\left(u \cap v \cap \bigcap_{j=1}^{n} y_j \right) \cup \bigcup_{i=2}^{m} x_i \right) \cap y \cdots \quad (\text{by } \mu \text{ for } Z_2) \\ &= \left(u \cup \bigcup_{i=2}^{m} x_i \right) \cap \left(v \cup \bigcup_{i=2}^{m} x_i \right) \cap \bigcap_{j=1}^{n} \left(y_i \cup \bigcup_{i=2}^{m} x_i \right) \cap y \cdots \quad (\text{by } \Delta^* \text{ for } Z) \\ &= \left((u \cap v) \cup \bigcup_{i=2}^{m} x_i \right) \cap \left(y \cup \bigcup_{i=2}^{m} x_i \right) \cap y \cdots \quad (\text{by } \Delta^* \text{ for } Z) \\ &= \left((\bigcup_{i=1}^{m} x_i \right) \cap y. \end{split}$$

Thus Δ is true for Y. By our preliminary remark, so is Δ^* .

Therefore $Y \in S$. On the other hand, since $Z \subseteq Y$ and Z is a maximal element in S, Z = Y. Thus $u \cap v \in Z$ for any element $u, v \in Z$. Similarly $u \cup v \in Z$ for any element $u, v \in Z$, so that Z is a sublattice of L. Furthermore Z is distributive, because

$$(x_1 \cap y) \cup (x_2 \cap y) = (x_1 \cup x_2) \cap y \cdots$$
 (by \varDelta for Z)

 $\langle H \rangle$ is therefore a sublattice of the distributive lattice Z, so that $\langle H \rangle$ is distributive.

Theorem 2. Let $\langle H \rangle$ be the sublattice generated by a nonempty subset H of a lattice L. The following five statements are equivalent:

- (1) $\langle H \rangle$ is distributive.
- (2) δ holds for any $a, b, c \in H_2$.
- (3) Δ holds for any $x_i \in H_{\cap}$ $(i=1, 2, \dots, m)$ and any $y \in H_2$.
- (4) δ and δ^* hold for any $a, b, c \in H_2$.

(5) Δ holds for any $x_i \in H$ $(i=1, 2, \dots, m)$ and any $y \in H_{\cap}$, and μ and μ^* hold for any $a, b, c \in H_2$.

Proof. (1) \Rightarrow (2): This implication is evident.

(2) \Rightarrow (3): We use induction on the number m. For any $x_i \in H_{\cap}$ and any $y \in H_2$,

$$\begin{pmatrix} \bigcup_{i=1}^{m} x_i \end{pmatrix} \cap y \\ = \begin{pmatrix} \bigcup_{i=1}^{m-1} x_i \cup x_m \end{pmatrix} \cap y \\ = \begin{pmatrix} \begin{pmatrix} \bigcup_{i=1}^{m-1} x_i \end{pmatrix} \cap y \end{pmatrix} \cup (x_m \cap y) \cdots \qquad \text{(by } \delta \text{ for } H_2) \\ = \bigcup_{i=1}^{m-1} (x_i \cap y) \cup (x_m \cap y) \cdots \qquad \text{(by the hypothesis)} \\ = \bigcup_{i=1}^{m} (x_i \cap y).$$

(3) \Rightarrow (4): By applying (3) twice, we prove that for any $x_i, y_j \in H$ $(i=1, 2, \dots, m: j=1, 2, \dots, n)$,

$$\begin{pmatrix} \bigcup_{i=1}^{m} x_i \end{pmatrix} \cap \begin{pmatrix} \bigcup_{j=1}^{n} y_j \end{pmatrix}$$

= $\bigcup_{i=1}^{m} \begin{pmatrix} x_i \cap \begin{pmatrix} \bigcup_{j=1}^{n} y_j \end{pmatrix} \end{pmatrix} \cdots$ (by \varDelta in the condition (3))
= $\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} (x_i \cap y_j) \cdots$ (by \varDelta in the condition (3)).

Hence, by induction on number r,

$$\bigcap_{i=1}^{r} \left(\bigcup_{j(i)=1}^{n(i)} x_{j(i)} \right) = \bigcup_{j(i)=1}^{n(1)} \cdots \bigcup_{j(r)=1}^{n(r)} \left(\bigcap_{i=1}^{r} x_{ij(i)} \right)$$

for any $x_{ij(i)} \in H$ $(i=1,2,\cdots,r: j(i)=1,2,\cdots,n(i))$. Thus we have the following lemma.

Lemma. (3) implies $H_2 = H_{\cup \cap}$.

Now we shall show that δ holds for any $a, b, c \in H_2$. By Lemma, there exists x_i $(i=1,2,\dots,m+n)$ in H_{\cap} such that $a=\bigcup_{i=1}^m x_i$ and $b=\bigcup_{i=m+1}^m x_i$.

$$(a \cup b) \cap c$$

$$= \left(\bigcup_{i=1}^{m+n} x_i \right) \cap c$$

$$= \bigcup_{i=1}^{m+n} (x_i \cap c) \cdots \qquad \text{(by Δ in the condition (3))}$$

$$= \bigcup_{i=1}^{m} (x_i \cap c) \cup \bigcup_{i=m+1}^{m+n} (x_i \cap c)$$

$$= (a \cap c) \cup (b \cap c) \cdots \qquad \text{(by Δ in the condition (3))}$$

Next, we shall show that δ^* holds for any $a, b, c \in H_2$. By Lemma, there exists x_i $(i=1,2,\dots,m+n)$ in H_{\cap} such that $b=\bigcup_{i=1}^m x_i$ and $c=\bigcup_{i=1}^{m+n} x_i$. Thus $d=b\cup c=\bigcup_{i=1}^{m+n} x_i \in H_2$, and

$$(a \cup c) \cap (b \cup c)$$

= $(a \cup c) \cap d$
= $(a \cap d) \cup (c \cap d) \cdots$ (by δ for H_2)
= $(a \cap (b \cup c)) \cup (c \cap (b \cup c))$
= $(a \cap b) \cup (a \cap c) \cup c \cdots$ (by δ for H_2)
= $(a \cap b) \cup c$.

No. 5]

 $(4) \Rightarrow (5)$: (4) implies (2) and (2) implies (3). (3) implies Δ for any $x_i \in H$ $(i=1,2,\dots,m)$ and any $y \in H_{\cap}$. Next, we shall show that μ holds for any $a, b, c \in H_2$.

 $\begin{array}{l} ((a \cup c) \cap b) \cup c \\ = (a \cap b) \cup (c \cap b) \cup c \cdots \qquad (\text{by } \delta \text{ for } H_2) \\ = (a \cap b) \cup c \\ = (a \cup c) \cap (b \cup c) \cdots \qquad (\text{by } \delta^* \text{ for } H_2). \end{array}$

In a similar way we can prove that μ^* holds for any $a, b, c \in H_2$. (5) \Rightarrow (1): This implication is proved in Theorem 1.

Theorem 3. Let $\langle H \rangle$ be the sublattice generated by a nonempty subset H of a modular lattice M. The following three statements are equivalent.

- (1) $\langle H \rangle$ is distributive.
- (2) δ holds for any $a, b, c \in H_1$.
- (3) Δ holds for any $x_i \in H$ $(i=1, 2, \dots, m)$ and any $y \in H_{\cap}$.

Proof. The implication $(1) \Rightarrow (2)$ is evident.

The implication (2) \Rightarrow (3) can be proved similarly to the proof (2) \Rightarrow (3) in Theorem 2.

The implication $(3) \Rightarrow (1)$ is the original form of Jónsson's theorem in [1].

References

- B. Jónsson: Distributive sublattices of a modular lattice. Proc. Amer. Math. Soc., 6, 682-688 (1955).
- [2] G. Birkhoff: Lattice Theory. Amer. Math. Soc. Colloquium Publication, 25. New York.
- [3] G. Szasz: Introduction to Lattice Theory. Academic Press, New York and London.