98. On Distributive Sublattices of a Lattice*)

By Saburo Tamura
Yamaguchi University
(Comm. by Kenjiro Shoda, m. J. A., May 12, 1971)

In his note [1], B. Jónsson gave a necessary and sufficient condition that the sublattice generated by a subset H of a modular lattice should be distributive. This condition can be proved to be equivalent to the statement that $(a \cap c) \cup(b \cap c)=(a \cup b) \cap c$ for any a, b, c in H_{1}, where H_{1} consists of all elements which can be written as a finite join or a finite meet of elements in H. The main purpose of this paper is to prove that in order for the sublattice generated by a subset H of a lattice to be distributive it is a necessary and sufficient condition that $(a \cap c) \cup(b \cap c)$ $=(a \cup b) \cap c$ for any a, b, c in H_{2}, where H_{2} consists of all elements which can be written as a finite join or a finite meet of elements in H_{1}.

Let $\langle H\rangle$ be a sublattice generated by a nonempty subset H of a lattice L. The finite join $\bigcup_{i=1}^{m} x_{i}$ of elements $x_{1}, x_{2}, \cdots, x_{m}$ in H is called a \cup-element in $\langle H\rangle$. The set of all \cup-elements in $\langle H\rangle$ is denoted by H_{\cup} and dually the set of all \cap-elements in $\langle H\rangle$ by H_{n}. One of U - or \cap-elements in $\langle H\rangle$ is said to be a 1st-element in $\langle H\rangle$, and the set of all 1st-elements in $\langle H\rangle$ is denoted by H_{1}. The finite join $\bigcup_{i=1}^{m} x_{i}$ of $\cap-$ elements $x_{1}, x_{2}, \cdots, x_{m}$ in $\langle H\rangle$ is called a $\cup \cap$-element in $\langle H\rangle$. The set of all $\cup \cap$-elements in $\langle H\rangle$ is denoted by $H_{\cup \cap}$ and dually the set of all $\cap \cup$-elements in $\langle H\rangle$ by $H_{\cap \cup}$. One of $\cup \cap$ - or $\cap \cup$-elements in $\langle H\rangle$ is said to be a 2 nd-element in $\langle H\rangle$, and the set of all 2nd-elements in $\langle H\rangle$ is denoted by H_{2}.

Two modular laws will be denoted by

$$
\begin{aligned}
\mu: & (a \cap c) \cup(b \cap c)=((a \cap c) \cup b) \cap c, \text { and } \\
\mu^{*}: & (a \cup c) \cap(b \cup c)=((a \cup c) \cap b) \cup c .
\end{aligned}
$$

Four distributive laws will be denoted by

$$
\delta: \quad(a \cap c) \cup(b \cap c)=(a \cup b) \cap c
$$

$\delta^{*}: \quad(a \cup c) \cap(b \cup c)=(a \cap b) \cup c$,
$\Delta: \quad \bigcup_{i=1}^{m}\left(x_{i} \cap y\right)=\left(\bigcup_{i=1}^{m} x_{i}\right) \cap y$, and
$\Delta^{*}: \bigcap_{i=1}^{m}\left(x_{i} \cup y\right)=\left(\bigcap_{i=1}^{m} x_{i}\right) \cup y$.
Theorem 1. Let $\langle H\rangle$ be the sublattice generated by a nonempty subset H of a lattice L. In order that $\langle H\rangle$ be distributive it is necessary and sufficient that Δ holds for any $x_{i} \in H(i=1,2, \cdots, m)$ and any $y \in H_{\cap}$ (or briefly Δ holds for H), and μ and μ^{*} hold for any $a, b, c \in H_{2}$

[^0](or briefly μ and μ^{*} hold for H_{2}).
Proof. This condition is obviously necessary. To prove that it is also sufficient, we first show that whenever X is any subset of L and μ and μ^{*} hold for X_{2}, Δ holds for X if and only if Δ^{*} holds for $X . \quad \Delta^{*}$ clearly holds for $m=1$. Assuming that it holds for $m=k$, we consider the case in which $m=k+1$. Let $y=\bigcup_{j=1}^{m} y_{j}$, where $y_{j} \in H$. Then
\[

$$
\begin{aligned}
\bigcap_{i=1}^{m} & \left(x_{i} \cup y\right) \\
& =\left(x_{1} \cup y\right) \cap \bigcap_{i=2}^{m}\left(x_{i} \cup y\right) \\
& =\left(x_{1} \cup y\right) \cap\left(\left(\bigcap_{i=2}^{m} x_{i}\right) \cup y\right) \cdots \quad \text { (by the hypothesis) } \\
& \left.=\left(\left(x_{1} \cup \bigcup_{j=1}^{n} y_{j}\right) \cap \bigcap_{i=1}^{m} x_{i}\right) \cup y \ldots \quad \text { (by } \mu^{*} \text { for } X_{2}\right) \\
& \left.=\left(x_{1} \cap \bigcap_{i=2}^{m} x_{i}\right) \cup \bigcup_{j=1}^{n}\left(y_{j} \cap \bigcap_{i=2}^{m} x_{i}\right) \cup y \ldots \quad \text { (by } \Delta \text { for } X\right) \\
& \left.=\left(\bigcap_{i=1}^{m} x_{i}\right) \cup\left(y \cap \bigcap_{i=2}^{m} x_{i}\right) \cup y \ldots \quad \quad \text { (by } \Delta^{*} \text { for } X\right) \\
& =\left(\bigcap_{i=1}^{m} x_{i}\right) \cup y .
\end{aligned}
$$
\]

Thus Δ^{*} is implied by Δ. By dualizing the proof we obtain that Δ is implied by Δ^{*}.

Now suppose H satisfies the condition of the theorem. Let S be the family of all subsets X of L satisfying the following three conditions:
(a) $X \supseteq H$,
(b) Δ and Δ^{*} hold for X, and
(c) μ and μ^{*} hold for X_{2}.
\boldsymbol{S} is, obviously, partly ordered by the set inclusion. Then it is easily verified that the set union of any chain of sets belonging to S also has the properties (a), (b) and (c). From this, by applying the Zorn's lemma, \boldsymbol{S} has at least one maximal element Z. Thus $Z \supseteq H, \Delta$ and Δ^{*} hold for Z and μ and μ^{*} hold for Z_{2}.

Suppose $u, v \in Z$ and let $Y=Z \bigvee\{u \cap v\}$. (\vee is the set union.) Clearly, $Y \supseteq H$. In order to show that μ and μ^{*} hold for any $a, b, c \in Y_{2}$, we shall prove that $a \in Y_{2}$ implies $a \in Z_{2}$.
(1) The case in which $a \in Y_{\cup \cap}$:
$Y_{\cap}=Z_{\cap}$, so $a \in Y_{\cup \cap}=Z_{\cup \cap} \subseteq Z_{2}$.
(2) The case in which $a \in Y_{\cap \cup}$:

In this case a is represented as $a=\bigcap_{i=1}^{m} x_{i}$, where $x_{i}=\bigcup_{j(i)=1}^{n(i)} y_{j(i)} \in Y_{U}$ and $y_{j(i)} \in Y$. If none of the elements $y_{j(i)}$ equal $u \cap v$, then $a \in Z_{2}$. If some $y_{j(i)}$ equals $u \cap v$, then there exists x_{i}^{\prime} such that $x_{i}=(u \cap v) \cup x_{i}^{\prime}$, $x_{i}^{\prime}=\bigcup_{j(i)=1}^{n \prime(i)} y_{j(i)}^{\prime} \in Y_{U}$ and none of $y_{j(i)}^{\prime}$ equal $u \cap v$. Thus $x_{i}^{\prime} \in Z_{U}$.

$$
\begin{aligned}
x_{i} & =(u \cap v) \cup x_{i}^{\prime} \\
& =\left(u \cup x_{i}^{\prime}\right) \cap\left(v \cup x_{i}^{\prime}\right) \ldots \quad\left(\text { by } \Delta^{*} \text { for } Z\right)
\end{aligned}
$$

Since $u \cup x_{i}^{\prime}, v \cup x_{i}^{\prime} \in \boldsymbol{Z}_{\cup}$, each $x_{i} \in \boldsymbol{Z}_{\cap \cup}$. Therefore $a=\bigcap_{i=1}^{m} x_{i} \in \boldsymbol{Z}_{\cap \cup} \subseteq \boldsymbol{Z}_{2}$.
Now we shall prove that μ and μ^{*} hold whenever $a, b, c \in Y_{2}$. If $a, b, c \in Y_{2}$ then $a, b, c \in Z_{2}$. Hence μ and μ^{*} hold for $a, b, c \in Z_{2}$, so also for $a, b, c \in Y_{2}$.

Next, in order to show that Δ holds whenever $x_{i} \in Y$ and $y \in Y_{n}$, we need only consider the essential case in which $x_{2}, \cdots, x_{m} \in Z, x_{1}=u \cap v$ and $y \in Z_{n}$, since $Z_{n}=Y_{n}$. Let $y=\bigcap_{j=1}^{n} y_{j}$, where $y_{j} \in Z$. Then we have

$$
\begin{aligned}
\bigcup_{i=1}^{m} & \left(x_{i} \cap y\right) \\
& =\left(x_{1} \cap y\right) \cup \bigcup_{i=2}^{m}\left(x_{i} \cap y\right) \\
& \left.=\left(x_{1} \cap y\right) \cup\left(\left(\bigcup_{i=2}^{m} x_{i}\right) \cap y\right) \ldots \quad \text { (by } \Delta \text { for } Z\right) \\
& \left.=\left(\left(u \cap v \cap \bigcap_{j=1}^{n} y_{j}\right) \cup \bigcup_{i=2}^{m} x_{i}\right) \cap y \ldots \quad \text { (by } \mu \text { for } Z_{2}\right) \\
& \left.=\left(u \cup \bigcup_{i=2}^{m} x_{i}\right) \cap\left(v \cup \bigcup_{i=2}^{m} x_{i}\right) \cap \bigcap_{j=1}^{n}\left(y_{i} \cup \bigcup_{i=2}^{m} x_{i}\right) \cap y \ldots \quad \text { (by } \Delta^{*} \text { for } Z\right) \\
& \left.=\left((u \cap v) \cup \bigcup_{i=2}^{m} x_{i}\right) \cap\left(y \cup \bigcup_{i=2}^{m} x_{i}\right) \cap y \ldots \quad \text { (by } \Delta^{*} \text { for } Z\right) \\
& =\left(\bigcup_{i=1}^{m} x_{i}\right) \cap y .
\end{aligned}
$$

Thus Δ is true for Y. By our preliminary remark, so is Δ^{*}.
Therefore $Y \in S$. On the other hand, since $Z \subseteq Y$ and Z is a maximal element in $S, Z=Y$. Thus $u \cap v \in Z$ for any element $u, v \in Z$. Similarly $u \cup v \in Z$ for any element $u, v \in Z$, so that Z is a sublattice of L. Furthermore Z is distributive, because

$$
\begin{aligned}
& \left(x_{1} \cap y\right) \cup\left(x_{2} \cap y\right) \\
& \quad=\left(x_{1} \cup x_{2}\right) \cap y \ldots \quad(\text { by } \Delta \text { for } Z)
\end{aligned}
$$

$\langle H\rangle$ is therefore a sublattice of the distributive lattice Z, so that $\langle H\rangle$ is distributive.

Theorem 2. Let $\langle H\rangle$ be the sublattice generated by a nonempty subset H of a lattice L. The following five statements are equivalent:
(1) $\langle H\rangle$ is distributive.
(2) δ holds for any $a, b, c \in H_{2}$.
(3) Δ holds for any $x_{i} \in H_{\cap}(i=1,2, \cdots, m)$ and any $y \in H_{2}$.
(4) δ and δ^{*} hold for any $a, b, c \in H_{2}$.
(5) Δ holds for any $x_{i} \in H(i=1,2, \cdots, m)$ and any $y \in H_{n}$, and μ and μ^{*} hold for any $a, b, c \in H_{2}$.

Proof. (1) $\Rightarrow(2)$: This implication is evident.
$(2) \Rightarrow(3)$: We use induction on the number m. For any $x_{i} \in H_{n}$ and any $y \in H_{2}$,

$$
\begin{aligned}
& \left(\bigcup_{i=1}^{m} x_{i}\right) \cap y \\
& \quad=\left(\bigcup_{i=1}^{m-1} x_{i} \cup x_{m}\right) \cap y \\
& \left.=\left(\left(\bigcup_{i=1}^{m-1} x_{i}\right) \cap y\right) \cup\left(x_{m} \cap y\right) \cdots \quad \quad \text { (by } \delta \text { for } H_{2}\right) \\
& \quad=\bigcup_{i=1}^{m-1}\left(x_{i} \cap y\right) \cup\left(x_{m} \cap y\right) \cdots \quad \text { (by the hypothesis) } \\
& \quad=\bigcup_{i=1}^{m}\left(x_{i} \cap y\right) .
\end{aligned}
$$

$(3) \Rightarrow(4)$: By applying (3) twice, we prove that for any $x_{i}, y_{j} \in H(i=1$, $2, \cdots, m: j=1,2, \cdots, n$),

$$
\left(\bigcup_{i=1}^{m} x_{i}\right) \cap\left(\bigcup_{j=1}^{n} y_{j}\right)
$$

$$
=\bigcup_{i=1}^{m}\left(x_{i} \cap\left(\bigcup_{j=1}^{n} y_{j}\right)\right) \cdots \quad(\text { by } \Delta \text { in the condition (3)) }
$$

$$
=\bigcup_{i=1}^{m} \bigcup_{j=1}^{n}\left(x_{i} \cap y_{j}\right) \cdots \quad \text { (by } \Delta \text { in the condition (3)) }
$$

Hence, by induction on number r,

$$
\bigcap_{i=1}^{r}\left(\bigcup_{j(i)=1}^{n(i)} x_{j(i)}\right)=\bigcup_{j(i)=1}^{n(1)} \cdots \bigcup_{j(r)=1}^{n(r)}\left(\bigcap_{i=1}^{r} x_{i j(i)}\right)
$$

for any $x_{i j(i)} \in H(i=1,2, \cdots, r: j(i)=1,2, \cdots, n(i))$. Thus we have the following lemma.

Lemma. (3) implies $H_{2}=H_{\text {U }}$.
Now we shall show that δ holds for any $a, b, c \in H_{2}$. By Lemma, there exists $x_{i}(i=1,2, \cdots, m+n)$ in H_{n} such that $a=\cup_{i=1}^{m} x_{i}$ and b $=\bigcup_{i=m+1}^{m+n} x_{i}$.

$$
\begin{aligned}
(a & \cup b) \cap c \\
& =\left(\bigcup_{i=1}^{m+n} x_{i}\right) \cap c \\
& =\bigcup_{i=1}^{m+n}\left(x_{i} \cap c\right) \ldots \quad(\text { by } \Delta \text { in the condition (3)) } \\
& =\bigcup_{i=1}^{m}\left(x_{i} \cap c\right) \cup \bigcup_{i=m+1}^{m+n}\left(x_{i} \cap c\right) \\
& =(a \cap c) \cup(b \cap c) \cdots \quad \text { (by } \Delta \text { in the condition (3)) }
\end{aligned}
$$

Next, we shall show that δ^{*} holds for any $a, b, c \in H_{2}$. By Lemma, there exists $x_{i}(i=1,2, \cdots, m+n)$ in H_{n} such that $b=\bigcup_{i=1}^{m} x_{i}$ and c $=\bigcup_{i=m+1}^{m+n} x_{i}$. Thus $d=b \cup c=\bigcup_{i=1}^{m+n} x_{i} \in H_{2}$, and

$$
\begin{aligned}
&(a \cup c) \cap(b \cup c) \\
& \quad=(a \cup c) \cap d \\
&=(a \cap d) \cup(c \cap d) \cdots \quad\left(\text { by } \delta \text { for } H_{2}\right) \\
&=(a \cap(b \cup c)) \cup(c \cap(b \cup c)) \\
&=(a \cap b) \cup(a \cap c) \cup c \cdots \quad\left(\text { by } \delta \text { for } H_{2}\right) \\
&=(a \cap b) \cup c .
\end{aligned}
$$

$(4) \Rightarrow(5)$: (4) implies (2) and (2) implies (3). (3) implies Δ for any $x_{i} \in H(i=1,2, \cdots, m)$ and any $y \in H_{n}$. Next, we shall show that μ holds for any $a, b, c \in H_{2}$.

$$
\begin{aligned}
& ((a \cup c) \cap b) \cup c \\
& \quad=(a \cap b) \cup(c \cap b) \cup c \cdots \quad\left(\text { by } \delta \text { for } H_{2}\right) \\
& \quad=(a \cap b) \cup c \\
& \quad=(a \cup c) \cap(b \cup c) \cdots \quad\left(\text { by } \delta^{*} \text { for } H_{2}\right) .
\end{aligned}
$$

In a similar way we can prove that μ^{*} holds for any $a, b, c \in H_{2}$.
$(5) \Rightarrow(1)$: This implication is proved in Theorem 1.
Theorem 3. Let $\langle H\rangle$ be the sublattice generated by a nonempty subset H of a modular lattice M. The following three statements are equivalent.
(1) $\langle H\rangle$ is distributive.
(2) δ holds for any $a, b, c \in H_{1}$.
(3) Δ holds for any $x_{i} \in H(i=1,2, \cdots, m)$ and any $y \in H_{n}$.

Proof. The implication (1) $\Rightarrow(2)$ is evident.
The implication (2) $\Rightarrow(3)$ can be proved similarly to the proof (2) $\Rightarrow(3)$ in Theorem 2.

The implication $(3) \Rightarrow(1)$ is the original form of Jonsson's theorem in [1].

References

[1] B. Jónsson: Distributive sublattices of a modular lattice. Proc. Amer. Math. Soc., 6, 682-688 (1955).
[2] G. Birkhoff: Lattice Theory. Amer. Math. Soc. Colloquium Publication, 25. New York.
[3] G. Szasz: Introduction to Lattice Theory. Academic Press, New York and London.

[^0]: *) Dedicated to Professor K. Asano on his sixtieth birthday.

