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117. Modules over Bounded Dedekind Prime Rings. 11

By Hidetoshi MARUBAYASHI
College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M, J. A., June 12, 1971)

This paper is a continuation of [3]. Let D be an s-local domain
which is a principal ideal ring. Then every right (left) ideal is an ideal
and every ideal of D is a power of J(D)(see [2]). We put J(D)=p,D
=Dp,. Then every non-unit d ¢ D can be uniquely expressed as d=pke
=¢’'pk, where ¢, ¢’ are units of D and k is an integer.

Let M be a D-module. An element x in M has height n if x is divis-
ible by p? but not by pr**; it has infinite height if it is divisible by p?
for every n. We write h(x) for the height of x; thus h(x) is a (non-
negative) integer or the symbol co. Terminology and notation will be
taken from [3].

Lemma 1. Let D be an s-local domain which is a principal ideal
ring, let M be a D-module and let S be o submodule with no elements of
infinite height. Suppose that the elements of order J(D) in S have the
same height in S as in M. Then S is pure.

Lemma 2. Let D be an s-local domain which is a principal ideal
ring and let M be a D-module. Suppose that all elements of order J(D)
in M have infinite height. Then M is divisible.

An R-module is said to be reduced if it has no non-zero divisible
submodules.

Theorem 1. Let R be a bounded Dedekind prime ring and let P
be a prime ideal of R. If M is a P-primary reduced R-module, then M
possesses a direct summand which is isomorphic to eR/eP™, where e is
a uniform idempotent contained in Rp.

By Theorem 1, we have

Theorem 2. Let R be a bounded Dedekind prime ring. Then

(i) An finitely generated indecomposable R-module cannot be
mixed and is not divisible, i.e., it is either torsion-free or torsion. In
the former case, it is isomorphic to a uniform right ideal of R and in
the latter case, it is isomorphic to eR[eP™ for some prime ideal P, where
e is a uniform idempotent contained in Rp.

(ii)) An indecomposable torsion R-module is either of type P> or
isomorphic to eR/eP™ for some prime ideal P, where e is a uniform
tdempotent contained in Rp.

Lemma 3. Let D be an s-local ring with J(D)=p,D which is a
principal ideal domain. Let M be a D-module, let H be a pure submodule
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and let x be an element of order J(D) not in H. Suppose that h(x)
=n< oo and suppose further that h(x+a) < h(x) for every a in H with
O(@)=J(D). If K is the cyclic submodule generated by y with x=yp3
and if L=H + K, then L is the direct sum of H and K, and L is pure
again.

A D-module M is of bounded height if there exists a constant k&
such that m(x) £k for all x in M. A set {x;} of elements of M is pure
independent if the sum Y] x,D is direct and pure in M.

Lemma 4. Let D be an s-local ring with J=p,D which is a
principal ideal domain. Let M be a D-module and let A be the sub-
module of elements x satisfying O(x)=J. Suppose that B, C are sub-
modules of A, with CCBC A, and that B is of bounded height. If {x;}
i3 o pure independent set satisfying Y, ®x,DNA=C, then {x;} can
be enlarged on a pure independent set {y;} satisfying Y, ®y;DNA=B.

Lemma 5. Let P be a prime ideal of a bounded Dedekind prime
ring R and let Rp=(D),, where D=e,Rpe,; and e,, is the matrix with
1 in the (1,1) position and zeros elsewhere. If M is a P-primary R-
module, then M is a direct sum of cyclic R-modules if and only if Me,,
s a direct sum of cyclic D-modules.

Lemma 6. With the same R, P, D and M as in Lemma 5, suppose
that A is the D-submodule of elements x of Me,, satisfying O(x)=J(D).
Then a necessary and sufficient condition for M to be a direct sum of
cyclic R-modules is that A be the union of an ascending sequence of D-
submodules with bounded height.

Now let M be a P-primary R-module and let x be a non-zero ele-
ment of M. Then x has height n if x ¢ MP* and ¢ MP"*!, it has
infinite height if x ¢ MP™ for every n.

From Lemmas 3,4, 5 and 6 we have

Theorem 3. Let P be a prime ideal of a bounded Dedekind prime
ring R and let M be a P-primary R-module. Suppose that A is the
submodule of elements x of M satisfying xP=0. Then a necessary
and sufficient condition for M to be a direct sum of cyclic R-modules is
that A be the union of an ascending sequence of submodules with bound-
ed height.

Corollary. Let R be a bounded Dedekind prime ring and let M be
a countable primary R-module with no elements of infinite height. Then
M 1is a direct sum of cyclic R-modules.

From Theorem 3, we have

Theorem 4. Let R be a bounded Dedekind prime ring and let M
be a primary R-module which is a direct sum of cyclic R-modules.
Then any submodule N of M is a direct sum of cyclic R-modules.

Theorem 5. Let R be a bounded Dedekind prime ring and let M



No. 6] Modules over Bounded Dedekind Prime Rings. IT 525

be a decomposable R-module. Then any submodule of M is decom-
posable.

Let M be an R-module. We call O(M)={re R|Mr=0} an order
ideal of M. If M is an n-dimensional in the sense of Goldie, then we
write n=dim M.

Now, let M be a finitely generated R-module. Then M is a direct
sum of uniform right ideals and uniform cyclic R-modules by Theorem
1 of [8] and Theorem 1. Thus we have

Theorem 6. Let R be a bounded Dedekind prime ring and let M
be a finitely generated R-module. Then for a decomposition of M into
the direct sum of uniform right ideals and uniform cyclic R-modules,
suppose that:

(i) the number of direct summands of uniform right ideals is r,

(i) the number of P-primary cyclic summands for a given prime
ideal P 1is k,, where k,=0, and that the orders of these summands are

Pevr Pepz ... Pepkp,
where

apl_Z_ ang. e Zapkp-
For a decomposition of any submodule N of M into the direct sum of
uniform right ideals and uniform cyclic R-modules, suppose that:

(i) the number of direct summands of uniform right ideals is s,

(i) the number of P-primary cyclic summands for a given prime
ideal P is l,, where 1,20, and that the orders of these summands are

Péor, PPrz, ... Péoip,
where

:Bplzﬁpzz e gﬁplp'
Then

(a) s=sr

() 1,=k, for each prime ideal P.

(C) ﬁpiéapi (i=1’ 2, ... ’ lp)

(D r+X k,=dimM and s+ Y l,=dim N.

From Theorem 1 and Theorem 1 of [1], we have

Theorem 7. Let P be a prime ideal of a bounded Dedekind prime
ring R and let M be a P-primary R-module. If M is decomposable,
then M is a direct sum of uniform cyclic R-modules and the cardinal

number of uniform cyclic summands of a given order is an tnvariant
of M.
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