137. Determination of $\tilde{K}_O(X)$ by $\tilde{K}_{SO}(X)$ for 4-Dimensional CW-Complexes

By Yutaka ANDO

Mathematical Institute, Tokyo University of Fisheries

(Comm. by Kenjiro Shoda, M. J. A., Sept. 13, 1971)

0. For a connected finite 4-dimensional CW-complex X we denote the group of stable vector bundles over X by $\tilde{K}_{o}(X)$, and the group of orientable stable vector bundles over X by $\tilde{K}_{so}(X)$. In the previous paper [2] S. Sasao and the author determined the group structures of $\tilde{K}_{so}(X)$ by cohomology rings. In this note we shall determine the relation between $\tilde{K}_{o}(X)$ and $\tilde{K}_{so}(X)$. Our results include that $\tilde{K}_{o}(X)$ $\cong \tilde{K}_{so}(X) + H^{1}(X; \mathbb{Z}_{2})$ if and only if $Sq^{1}H^{1}(X; \mathbb{Z}_{2}) = 0$. The author wishes to thank Professor S. Sasao for his valuable suggestions.

1. We can easily prove the following

Proposition 1. The sequence

$$0 \longrightarrow \tilde{K}_{so}(X) \xrightarrow{i} \tilde{K}_{o}(X) \xrightarrow{W_{1}} H^{1}(X; \mathbb{Z}_{2}) \longrightarrow 0$$

is exact, where i is a map which forgets the orientation and W_1 maps each class $[\xi]$ to the first Whitney class $W_1(\xi)$ of a bundle ξ which represents $[\xi]$.

This proposition shows that $\tilde{K}_o(X)$ is an element of $EXT(H^1(X; Z_2), \tilde{K}_{so}(X))$. So we investigate this group.

Proposition 2. There exists an isomorphism

$$\varphi: EXT(H^{1}(X; Z_{2}), \tilde{K}_{SO}(X) \longrightarrow \sum_{i=1}^{r} (\tilde{K}_{SO}(X)/2\tilde{K}_{SO}(X))_{i}$$

where $r = \dim H^1(X; \mathbb{Z}_2)$.

Proof. We assume that $H^1(X; \mathbb{Z}_2) \cong \sum_{i=1}^r \mathbb{Z}_2[\alpha_i]$, where [] denotes the generator. Consider the following exact sequence

$$0 \longrightarrow H \xrightarrow{i} F \xrightarrow{j} H^{1}(X; Z_{2}) \longrightarrow 0$$

where F is a free abelian group generated by $\{f_i\}$ such that $j(f_i) = \alpha_i$. By $\{h_i\}$ we denote generators of H corresponding to $\{2f_i\}$ via i. Then we know that there exists an isomorphism

 $\rho: EXT(H^1(X; \mathbb{Z}_2), \tilde{K}_{so}(X)) \rightarrow HOM(H, \tilde{K}_{so}(X)) / \text{image } HOM(F, \tilde{K}_{so}(X))$ defined as follows. For an exact sequence

$$0 \longrightarrow \tilde{K}_{so}(X) \longrightarrow G \longrightarrow H^{1}(X; Z_{2}) \longrightarrow 0$$

we take a set $\{g_i\}$ of elements of G going to $\{\alpha_i\}$. And we take a set $\{\gamma_i\}$ of elements of $\tilde{K}_{so}(X)$ going to $\{2g_i\}$. Now we put $\rho(G)(h_i) = \gamma_i$ then $\rho(G)$ is uniquely defined as an element of $HOM(H, \tilde{K}_{so}(X))/2HOM(H, \tilde{K}_{so}(X))$ $\cong HOM(H, \tilde{K}_{so}(X))/$ image $HOM(F, \tilde{K}_{so}(X))$. Let $p: \tilde{K}_{so}(X) \to \tilde{K}_{so}(X)$ $/2\tilde{K}_{so}(X)$ be a natural projection. For any element k in $HOM(H, \tilde{K}_{so}(X))$, we put $\psi(k) = \sum_{i=1}^{r} pk(h_i)$. Then it is easy to show that the map

$$\psi: HOM(H, \tilde{K}_{so}(X))/2HOM(H, \tilde{K}_{so}(X)) \longrightarrow \sum_{i=1}^{r} (\tilde{K}_{so}(X)/2\tilde{K}_{so}(X))_{i}$$

is bijective. Now $\varphi = \psi \circ \rho$ is the required isomorphism.

Let $H^{i}(X; \mathbb{Z}_{2}) \cong \sum_{i} \mathbb{Z}_{2}[\alpha_{i}]$ where [] denotes the generator of the group, $f_{\alpha_{i}}: X \to \mathbb{R}P^{\infty}$ be the characteristic map of α_{i} , and ξ_{0} be the canonical line bundle over $\mathbb{R}P^{\infty}$. We take $\eta_{i} = f^{*}_{\alpha_{i}}(\xi_{0})$ in $\tilde{K}_{0}(X)$ to be the induced bundle of ξ_{0} by $f_{\alpha_{i}}$. Then Proposition 2 shows that $\varphi(\tilde{K}_{0}(X)) = \sum_{i} [2\eta_{i}]$ where $[2\eta_{i}]$ in $\tilde{K}_{S0}(X)/2\tilde{K}_{S0}(X)$ is the class represented by $2\eta_{i}$.

2. Now we assume that $H^1(X; Z_2) \cong \sum_{i=1}^r Z_2[\alpha_i]$.

At first we suppose that $\alpha_i^2 \neq 0$. Then we have that $W(\eta_i) = 1 + \alpha_i$ for $\eta_i = f^*_{\alpha_i}(\xi_0)$, where $W(\eta_i)$ is the total Whitney class of η_i . For any element η in $\tilde{K}_{so}(X)$, we have that

$$egin{aligned} W(2(\eta_i \oplus \eta)) &= W(\eta_i \oplus \eta)^2 \ &= (W(\eta_i) W(\eta))^2 \ &= (1+lpha_i)^2 (1+W_2(\eta)+\cdots)^2 \ &= 1+lpha_i^2+W_2(\eta)^2+\cdots \ &
eq 1. \end{aligned}$$

Hence the bundle $2(\eta_i \oplus \eta)$ is non-trivial for any η in $\tilde{K}_{so}(X)$. Thus we proved that if $\alpha_i^2 \neq 0$, then $[2\eta_i]$ is non-zero in $\tilde{K}_{so}(X)/2\tilde{K}_{so}(X)$.

Secondly we suppose that $\alpha_i^2 = 0$. Consider the following commutative diagram;

$$egin{aligned} &\eta_i\in ilde{K}_0(X) &\xleftarrow{f^{lpha_i}} ilde{K}_0(RP^{\infty})
in \hat{\xi}_0 \ &c igg| & c igg| \ &\gamma_i'\in ilde{K}(X) &\xleftarrow{f^{lpha_i}} ilde{K}(RP^{\infty})
in \hat{\xi}_0' \ &r igg| \ &2\eta_i=\eta_i''\in ilde{K}_{SO}(X) \xleftarrow{f^{lpha_i}} ilde{K}_{SO}(PR^{\infty})
in \hat{\xi}_0''=2\hat{\xi}_0. \end{aligned}$$

Here $c: \tilde{K}_o(X) \to \tilde{K}(X)$ is the complexification and $r: \tilde{K}(X) \to \tilde{K}_{so}(X)$ is the rearization. Then we have that $\eta''_i = rc(\eta_i) = 2\eta_i$. The mod 2 reduction of the first Chern class of the bundle η'_i is as follows.

$$C_1(\eta_i')_2 = W_2(\eta_i'') = W_2(2\eta_i) = \alpha_i^2 = 0.$$

So there exists an element γ_i in $H^2(X; Z)$ such that $C_1(\eta'_i) = 2\gamma_i$. Let $g_{\tau_i}: X \to CP^{\infty}$ be the characteristic map of γ_i , and ζ_0 be the canonical complex line bundle over CP^{∞} . If we put $\theta_i = g^*_{\tau_i}(\zeta_0)$ in $\tilde{K}(X)$, we have that $C_1(\theta_i) = \gamma_i$. So we get the equations that

$$C_1(\theta_i^2) = 2\gamma_i = C_1(\eta_i').$$

As the bundles θ_i^2 and η_i' are complex line bundles over X, we have that $\theta_i^2 = \eta_i'$. And the first Chern class of $g_{i_i}^*(\zeta_i^2)$ is as follows.

$$C_1(g_{r_i}^*(\zeta_0^2)) = g_{r_i}^*(C_1(\eta_0^2)) = g_{r_i}^*(2C_1(\zeta_0)) = 2C_1(g_{r_i}^*(\zeta_0))$$

= 2C_1(\theta_i) = 2\gamma_i.

So we have that $g_{r_i}^*(\zeta_0^2) = \eta_i' = \theta_i^2$.

If we assume that dim X=4, we may use CP^2 for the classifying space CP^{∞} in the above. So we have the following commutative diagram.

$$egin{aligned} & heta_i^2 = \eta_i' \in ilde{K}(X) & \xleftarrow{g_{i_i}^*} ilde{K}(CP^2)
otin ilde{\zeta}_0^2 \ & \downarrow^r & r \downarrow \ & 2\eta_i = \eta_i'' \in ilde{K}_{so}(X) \xleftarrow{g_{i_i}^*} ilde{K}_{so}(CP^2)
otin r(\zeta_0^2). \end{aligned}$$

We will prove that $r(\zeta_0^2)$ can be divided by 2 in $\tilde{K}_{so}(CP^2)$. According to J. F. Adams [1], we have that $\tilde{K}(CP^2) \cong Z[\mu] + Z[\mu^2]$, where $\mu = \zeta_0$ -1. As the complex line bundle ζ_0 equals to μ , we have that the element ζ_0^2 in $\tilde{K}(CP^2)$ comes from $\tilde{K}(S^4)$ in the following diagram.

Commutativity of the above diagram shows that $r(\zeta_0^2)$ is divisible by 2 in $\tilde{K}_{so}(CP^2)$. Thus we proved that $[2\eta_i]=0$ in $\tilde{K}_{so}(X)/2\tilde{K}_{so}(X)$ if $\alpha_i^2=0$.

Summarizing the above, we have

Theorem. Let X be a connected finite 4-dimensional CW-complex whose first cohomology group $H^1(X; Z_2) \cong \sum_{i=1}^r Z_2[\alpha_i]$. In

$$EXT(H^{1}(X; \mathbb{Z}_{2}), \tilde{K}_{SO}(X)) \cong \sum_{i=1}^{7} (\tilde{K}_{SO}(X)/2\tilde{K}_{SO}(X))_{i},$$

the direct summand $(\tilde{K}_{so}(X)/2\tilde{K}_{so}(X))_i$ of $\tilde{K}_o(X)$ corresponding to α_i is zero if and only if $\alpha_i^2 = 0$.

Remark. This theorem is valid for dim $X \leq 7$.

3. In this section we give an application. Let X be a connected finite 4-dimensional CW-complex. The results of [2] are the following:

If we represent cohomology groups of X so that they satisfy the following properties i)-ii).

$$\begin{split} H^2(X\,;\,Z_2) &\cong \sum_{i=0}^{s_i} \sum_{j=1}^{s_i} Z_2[x_{ij}] + \sum_{k=1}^s Z_2[x_k]. \\ H^4(X\,;\,Z_2) &\cong \sum_{i=1}^{r_0} Z_2[\tilde{y}_i] + \sum_{i=1}^{r_i} \sum_{j=1}^{r_i} Z_2[\tilde{z}_{ij}]. \\ H^4(X\,;\,Z) &\cong \sum_{i=1}^{r_0} Z[y_i] + \sum_{i=1}^{r_i} \sum_{j=1}^{r_i} Z_{2i}[z_{ij}] \\ &+ \sum_{p: \text{ odd prime}} \sum_{i=1}^{t_i} \sum_{j=1}^{t_i} Z_{pi}[v_{pij}]. \end{split}$$

i) $x_k^2 = 0, x_{0j}^2 = \tilde{y}_j \text{ for } 1 \leq j \leq s_0, \text{ and } x_{ij}^2 = \tilde{z}_{ij} \text{ for } 1 \leq i \text{ and } 1 \leq j \leq s_i.$

ii) $\tilde{y}_i = i_1(y_i)$, and $\tilde{z}_{ij} = i_1(z_{ij})$, where $i_1 : H^4(X; Z) \rightarrow H^4(X; Z_2)$.

Then we have that

613

No. 7]

$$\begin{split} \tilde{K}_{SO}(X) &\cong \sum_{1}^{s} Z_{2} + \sum_{i=1}^{s} \sum_{j=1}^{s_{i}} Z_{2i+1} + \sum_{1}^{r_{0}} Z \\ &+ \sum_{i=1}^{r} \sum_{j=s_{i}+1}^{r_{i}} Z_{2i} + \sum_{p: \text{ odd prime } i=1}^{r} \sum_{j=1}^{t_{i}} Z_{pi} \end{split}$$

Let us assume that $H^1(X; \mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha]$, and $\alpha^2 \neq 0$.

a) If $\alpha^4 = 0$, there exists an element x_k in $H^2(X; Z_2)$ such that $\alpha^2 = x_k$. So we have that $2f^*_{\alpha}(\xi_0)$ is equivalent to the generator of order 2 in $\tilde{K}_{so}(X)$ (which is η_k in [2]). Thus we have that $\tilde{K}_o(X)$ is isomorphic to the group replacing a summand Z_2 with Z_4 in $\tilde{K}_{so}(X)$.

b) If $\alpha^4 \neq 0$, we have that $\delta(\alpha)^2 \neq 0$ where $\delta: H^1(X; Z_2) \rightarrow H^2(X; Z)$ is the connecting homomorphism. The fact that $2\delta(\alpha) = 0$ shows that there exists an element z_{1j} in $H^4(X; Z)$ such that $\delta(\alpha)^2 = z_{1j}$. Thus we have that $2f_a^*(\xi_0)$ is equivalent to the generator of order 4 in $\tilde{K}_{so}(X)$ (which is η'_{1j} in [2]). Now $\tilde{K}_0(X)$ is isomorphic to the group replacing a summand Z_4 with Z_8 in $\tilde{K}_{so}(X)$.

References

- [1] J. F. Adams: Vector fields on spheres. Ann. of Math., 75, 603-632 (1962).
- [2] S. Sasao and Y. Ando: KSO-groups for 4-dimensional CW-complexes. Nagoya Math. J., 42, 23-29 (1971).