137. Determination of $\tilde{K}_{O}(X)$ by $\tilde{K}_{S o}(X)$ for 4-Dimensional CW-Complexes

By Yutaka Ando
Mathematical Institute, Tokyo University of Fisheries (Comm. by Kenjiro Shoda, M. J. A., Sept. 13, 1971)

0. For a connected finite 4-dimensional $C W$-complex X we denote the group of stable vector bundles over X by $\tilde{K}_{o}(X)$, and the group of orientable stable vector bundles over X by $\tilde{K}_{S o}(X)$. In the previous paper [2] S. Sasao and the author determined the group structures of $\tilde{K}_{s o}(X)$ by cohomology rings. In this note we shall determine the relation between $\tilde{K}_{o}(X)$ and $\tilde{K}_{S o}(X)$. Our results include that $\tilde{K}_{o}(X)$ $\cong \tilde{K}_{S O}(X)+H^{1}\left(X ; Z_{2}\right)$ if and only if $S q^{1} H^{1}\left(X ; Z_{2}\right)=0$. The author wishes to thank Professor S. Sasao for his valuable suggestions.
1. We can easily prove the following

Proposition 1. The sequence

$$
0 \longrightarrow \tilde{K}_{S o}(X) \xrightarrow{i} \tilde{K}_{o}(X) \xrightarrow{W_{1}} H^{1}\left(X ; Z_{2}\right) \longrightarrow 0
$$

is exact, where i is a map which forgets the orientation and W_{1} maps each class [ξ] to the first Whitney class $W_{1}(\xi)$ of a bundle ξ which represents [$\xi]$.

This proposition shows that $\tilde{K}_{o}(X)$ is an element of $\operatorname{EXT}\left(H^{1}\left(X ; Z_{2}\right)\right.$, $\left.\tilde{K}_{s o}(X)\right)$. So we investigate this group.

Proposition 2. There exists an isomorphism

$$
\varphi: E X T\left(H^{1}\left(X ; Z_{2}\right), \tilde{K}_{S o}(X) \longrightarrow \sum_{i=1}^{r}\left(\tilde{K}_{S o}(X) / 2 \tilde{K}_{S o}(X)\right)_{i}\right.
$$

where $r=\operatorname{dim} H^{1}\left(X ; Z_{2}\right)$.
Proof. We assume that $H^{1}\left(X ; Z_{2}\right) \cong \sum_{i=1}^{r} Z_{2}\left[\alpha_{i}\right]$, where [] denotes the generator. Consider the follwing exact sequence

$$
0 \longrightarrow H \xrightarrow{i} F \xrightarrow{j} H^{1}\left(X ; Z_{2}\right) \longrightarrow 0
$$

where F is a free abelian group generated by $\left\{f_{i}\right\}$ such that $j\left(f_{i}\right)=\alpha_{i}$. By $\left\{h_{i}\right\}$ we denote generators of H corresponding to $\left\{2 f_{i}\right\}$ via i. Then we know that there exists an isomorphism
$\rho: \operatorname{EXT}\left(H^{1}\left(X ; Z_{2}\right), \tilde{K}_{S o}(X)\right) \rightarrow H O M\left(H, \tilde{K}_{S O}(X)\right) /$ image $H O M\left(F, \tilde{K}_{S o}(X)\right)$ defined as follows. For an exact sequence

$$
0 \longrightarrow \tilde{K}_{S o}(X) \longrightarrow G \longrightarrow H^{1}\left(X ; Z_{2}\right) \longrightarrow 0,
$$

we take a set $\left\{g_{i}\right\}$ of elements of G going to $\left\{\alpha_{i}\right\}$. And we take a set $\left\{\gamma_{i}\right\}$ of elements of $\tilde{K}_{S O}(X)$ going to $\left\{2 g_{i}\right\}$. Now we put $\rho(G)\left(h_{i}\right)=\gamma_{i}$ then $\rho(G)$ is uniquely defined as an element of $H O M\left(H, \tilde{K}_{s o}(X)\right) / 2 H O M\left(H, \tilde{K}_{S o}(X)\right)$ $\cong H O M\left(H, \tilde{K}_{S O}(X)\right) /$ image $\operatorname{HOM}\left(F, \tilde{K}_{S o}(X)\right)$. Let $p: \tilde{K}_{S o}(X) \rightarrow \tilde{K}_{S O}(X)$
$/ 2 \tilde{K}_{S o}(X)$ be a natural projection. For any element k in $H O M\left(H, \tilde{K}_{S O}(X)\right)$, we put $\psi(k)=\sum_{i=1}^{r} p k\left(h_{i}\right)$. Then it is easy to show that the map

$$
\psi: H O M\left(H, \tilde{K}_{S o}(X)\right) / 2 H O M\left(H, \tilde{K}_{S o}(X)\right) \longrightarrow \sum_{i=1}^{r}\left(\tilde{K}_{S O}(X) / 2 \tilde{K}_{S O}(X)\right)_{i}
$$

is bijective. Now $\varphi=\psi \circ \rho$ is the required isomorphism.
Let $H^{1}\left(X ; Z_{2}\right) \cong \sum_{i} Z_{2}\left[\alpha_{i}\right]$ where [] denotes the generator of the group, $f_{\alpha_{i}}: X \rightarrow R P^{\infty}$ be the characteristic map of α_{i}, and ξ_{0} be the canonical line bundle over $R P^{\infty}$. We take $\eta_{i}=f_{\alpha_{i}}^{*}\left(\xi_{0}\right)$ in $\tilde{K}_{o}(X)$ to be the induced bundle of ξ_{0} by $f_{\alpha_{i}}$. Then Proposition 2 shows that $\varphi\left(\tilde{K}_{o}(X)\right)$ $=\sum_{i}\left[2 \eta_{i}\right]$ where $\left[2 \eta_{i}\right]$ in $\tilde{K}_{S o}(X) / 2 \tilde{K}_{S o}(X)$ is the class represented by $2 \eta_{i}$.
2. Now we assume that $H^{1}\left(X ; Z_{2}\right) \cong \sum_{i=1}^{r} Z_{2}\left[\alpha_{i}\right]$.

At first we suppose that $\alpha_{i}{ }^{2} \neq 0$. Then we have that $W\left(\eta_{i}\right)=1+\alpha_{i}$ for $\eta_{i}=f_{\alpha_{i}}^{*}\left(\xi_{0}\right)$, where $W\left(\eta_{i}\right)$ is the total Whitney class of η_{i}. For any element η in $\tilde{K}_{S o}(X)$, we have that

$$
\begin{aligned}
W\left(2\left(\eta_{i} \oplus \eta\right)\right) & =W\left(\eta_{i} \oplus \eta\right)^{2} \\
& =\left(W\left(\eta_{i}\right) W(\eta)\right)^{2} \\
& =\left(1+\alpha_{i}\right)^{2}\left(1+W_{2}(\eta)+\cdots\right)^{2} \\
& =1+\alpha_{i}^{2}+W_{2}(\eta)^{2}+\cdots \\
& \neq 1 .
\end{aligned}
$$

Hence the bundle $2\left(\eta_{i} \oplus \eta\right)$ is non-trivial for any η in $\tilde{K}_{S O}(X)$. Thus we proved that if $\alpha_{i}^{2} \neq 0$, then [$2 \eta_{i}$] is non-zero in $\tilde{K}_{s o}(X) / 2 \tilde{K}_{s o}(X)$.

Secondly we suppose that $\alpha_{i}^{2}=0$. Consider the following commutative diagram;

Here $c: \tilde{K}_{o}(X) \rightarrow \tilde{K}(X)$ is the complexification and $r: \tilde{K}(X) \rightarrow \tilde{K}_{s o}(X)$ is the rearization. Then we have that $\eta_{i}^{\prime \prime}=r c\left(\eta_{i}\right)=2 \eta_{i}$. The $\bmod 2$ reduction of the first Chern class of the bundle η_{i}^{\prime} is as follows.

$$
C_{1}\left(\eta_{i}^{\prime}\right)_{2}=W_{2}\left(\eta_{i}^{\prime \prime}\right)=W_{2}\left(2 \eta_{i}\right)=\alpha_{i}^{2}=0
$$

So there exists an element γ_{i} in $H^{2}(X ; Z)$ such that $C_{1}\left(\eta_{i}^{\prime}\right)=2 \gamma_{i}$. Let $g_{r_{i}}: X \rightarrow C P^{\infty}$ be the characteristic map of γ_{i}, and ζ_{0} be the canonical complex line bundle over $C P^{\infty}$. If we put $\theta_{i}=g_{r_{i}}^{*}\left(\zeta_{0}\right)$ in $\tilde{K}(X)$, we have that $C_{1}\left(\theta_{i}\right)=\gamma_{i}$. So we get the equations that

$$
C_{1}\left(\theta_{i}^{2}\right)=2 \gamma_{i}=C_{1}\left(\eta_{i}^{\prime}\right) .
$$

As the bundles θ_{i}^{2} and η_{i}^{\prime} are complex line bundles over X, we have that $\theta_{i}^{2}=\eta_{i}^{\prime}$. And the first Chern class of $g_{r_{i}}^{*}\left(\zeta_{0}^{2}\right)$ is as follows.

$$
\begin{aligned}
C_{1}\left(g_{r_{i}}^{*}\left(\zeta_{0}^{2}\right)\right) & =g_{r_{i}}^{*}\left(C_{1}\left(\gamma_{0}^{2}\right)\right)=g_{r_{i}}^{*}\left(2 C_{1}\left(\zeta_{0}\right)\right)=2 C_{1}\left(g_{r_{i}}^{*}\left(\zeta_{0}\right)\right) \\
& =2 C_{1}\left(\theta_{i}\right)=2 \gamma_{i} .
\end{aligned}
$$

So we have that $g_{r_{i}}^{*}\left(\zeta_{0}^{2}\right)=\eta_{i}^{\prime}=\theta_{i}^{2}$.
If we assume that $\operatorname{dim} X=4$, we may use $C P^{2}$ for the classifying space $C P^{\infty}$ in the above. So we have the following commutative diagram.

We will prove that $r\left(\zeta_{0}^{2}\right)$ can be divided by 2 in $\tilde{K}_{S o}\left(C P^{2}\right)$. According to J. F. Adams [1], we have that $\tilde{K}\left(C P^{2}\right) \cong Z[\mu]+Z\left[\mu^{2}\right]$, where $\mu=\zeta_{0}$ -1 . As the complex line bundle ζ_{0} equals to μ, we have that the element ζ_{0}^{2} in $\tilde{K}\left(C P^{2}\right)$ comes from $\tilde{K}\left(S^{4}\right)$ in the following diagram.

Commutativity of the above diagram shows that $r\left(\zeta_{0}^{2}\right)$ is divisible by 2 in $\tilde{K}_{s o}\left(C P^{2}\right)$. Thus we proved that $\left[2 \eta_{i}\right]=0$ in $\tilde{K}_{S o}(X) / 2 \tilde{K}_{S o}(X)$ if $\alpha_{i}^{2}=0$.

Summarizing the above, we have
Theorem. Let X be a connected finite 4-dimensional CW-complex whose first cohomology group $H^{1}\left(X ; Z_{2}\right) \cong \sum_{i=1}^{r} Z_{2}\left[\alpha_{i}\right]$. In

$$
E X T\left(H^{1}\left(X ; Z_{2}\right), \tilde{K}_{S o}(X)\right) \cong \sum_{i=1}^{r}\left(\tilde{K}_{S o}(X) / 2 \tilde{K}_{S o}(X)\right)_{i},
$$

the direct summand $\left(\tilde{K}_{S O}(X) / 2 \tilde{K}_{S o}(X)\right)_{i}$ of $\tilde{K}_{o}(X)$ corresponding to α_{i} is zero if and only if $\alpha_{i}^{2}=0$.

Remark. This theorem is valid for $\operatorname{dim} X \leqq 7$.
3. In this section we give an application. Let X be a connected finite 4-dimensional $C W$-complex. The results of [2] are the following:

If we represent cohomology groups of X so that they satisfy the following properties i)-ii).

$$
\begin{aligned}
& H^{2}\left(X ; Z_{2}\right) \cong \sum_{i=0} \sum_{j=1}^{s i} Z_{2}\left[x_{i j}\right]+\sum_{k=1}^{s} Z_{2}\left[x_{k}\right] . \\
& H^{4}\left(X ; Z_{2}\right) \cong \sum_{i=1}^{r_{0}} Z_{2}\left[\tilde{y}_{i}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} Z_{2}\left[\tilde{z}_{i j}\right] . \\
& H^{4}(X ; Z) \cong \sum_{i=1}^{r_{0}} Z\left[y_{i}\right]+\sum_{i=1} \sum_{j=1}^{r_{i}} Z_{2 i}\left[z_{i j}\right] \\
&+\sum_{p: \text { odd prime }} \sum_{i=1} \sum_{j=1}^{t_{i}} Z_{p_{i}}\left[v_{p i j}\right] .
\end{aligned}
$$

i) $x_{k}^{2}=0, x_{0 j}^{2}=\widetilde{y}_{j}$ for $1 \leqq j \leqq s_{0}$, and $x_{i j}^{2}=\tilde{z}_{i j}$ for $1 \leqq i$ and $1 \leqq j \leqq s_{i}$.
ii) $\quad \tilde{y}_{i}=i_{1}\left(y_{i}\right)$, and $\tilde{z}_{i j}=i_{1}\left(z_{i j}\right)$, where $i_{1}: H^{4}(X ; Z) \rightarrow H^{4}\left(X ; Z_{2}\right)$.

Then we have that

$$
\begin{aligned}
\tilde{K}_{s o}(X) \cong & \xlongequal[1]{s} Z_{2}+\sum_{i=1} \sum_{i=1}^{s i} Z_{2 i+1}+\sum_{1}^{r_{0}} Z \\
& +\sum_{i=1} \sum_{j=s i+1}^{t_{i}+1} Z_{2 i}+\underset{p ; \text { odad prime }}{ } \sum_{i=1} \sum_{j=1}^{t_{i}} Z_{p i} .
\end{aligned}
$$

Let us assume that $H^{1}\left(X ; Z_{2}\right) \cong Z_{2}[\alpha]$, and $\alpha^{2} \neq 0$.
a) If $\alpha^{4}=0$, there exists an element x_{k} in $H^{2}\left(X ; Z_{2}\right)$ such that α^{2} $=x_{k}$. So we have that $2 f_{\alpha}^{*}\left(\xi_{0}\right)$ is equivalent to the generator of order 2 in $\tilde{K}_{s o}(X)$ (which is η_{k} in [2]). Thus we have that $\tilde{K}_{o}(X)$ is isomorphic to the group replacing a summand Z_{2} with Z_{4} in $\tilde{K}_{s o}(X)$.
b) If $\alpha^{4} \neq 0$, we have that $\delta(\alpha)^{2} \neq 0$ where $\delta: H^{1}\left(X ; Z_{2}\right) \rightarrow H^{2}(X: Z)$ is the connecting homomorphism. The fact that $2 \delta(\alpha)=0$ shows that there exists an element $z_{1 j}$ in $H^{4}(X ; Z)$ such that $\delta(\alpha)^{2}=z_{1 j}$. Thus we have that $2 f_{\alpha}^{*}\left(\mathcal{\xi}_{0}\right)$ is equivalent to the generator of order 4 in $\tilde{K}_{S o}(X)$ (which is $\eta_{1 j}^{\prime}$ in [2]). Now $\tilde{K}_{o}(X)$ is isomorphic to the group replacing a summand Z_{4} with Z_{8} in $\tilde{K}_{s o}(X)$.

References

[1] J. F. Adams: Vector fields on spheres. Ann. of Math., 75, 603-632 (1962).
[2] S. Sasao and Y. Ando: KSO-groups for 4-dimensional $C W$-complexes. Nagoya Math. J., 42, 23-29 (1971).

