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136. On Finite Groups whose Subgroups have
Simple Core Factors*)

By John POLAND
Carleton University, Ottawa, Canada

(Comm. by Kenjiro SHODA, M.J.A., Sept. 13, 1971)

If H is a subgroup of the finite group G then the core of H, denoted
Ha, is ee x-Hx, the largest of the normal subgroups of G contained
in H; the core factor of the subgroup H is H/He. G is called (see [1])
-core (respectively, 3-max-core) if all its subgroups (respectively, all
its maximal subgroups) have core factors in the class 5 of finite groups.
3-max-core groups have been classified, for some 5, in [1] and [4], but
little is known about -core groups. Of course, if ={1}, -core groups
are precisely the Hamiltonian groups; the purpose of this paper is to
give information about 5-core groups close to Hamiltonian groups-that
is, groups whose core factors are relatively uncomplicated.

Throughout this paper, all groups considered are finite. Unless
otherwise specified, references and notation are drawn from [3]. Let, , and denote the classes of all groups which are simple, cyclic,
and of prime-power order, respectively (including the trivial group).
Then (R) =13 is the class of all groups of order a prime. We begin
by showing that -core groups are f -core groups.

(1) Theorem. -core groups are solvable.
Proof. We recall from [1] that subgroups and homomorphic

images of -core groups are again (R)-core groups. Now let G be a
minimal counterexample. If lq=N<G,N=/=G, then N and GIN are -core groups and by induction must be solvable, making G solvable, a
contradiction. Therefore G is simple. But then all subgroups of G
have trivial core and hence must be simple too-even the Sylow sub-
groups. This means G has only cyclic Sylow subgroups and so by a
theorem of HSlder (p. 420, [3]) is solvable.

(2) Corollary. If G is an -core groups and H_G then Ho has
index at most a prime in H.

(3) Corollary. If G is an -core group then F(G), the Fitting
subgroup, has index at most a prime in G.

Proof. This follows directly from Proposition (7) of [1].

*) The writer thanks the National Research Council, The Ontario Govern-
ment, and the Canadian Mathematical Congress for grants which enabled this
work to be done.
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Are -max-core groups also solvable? This reduces to"
(4) Conjecture. There are no simple groups all of whose maximal

subgroups are simple.
For, i this conjecture holds, and G is an -max-core group with

M a maximal subgroup, then if M:/= 1, by induction M/Mo in G/M is
solvable while if Me- 1, then let 1 #= N<G, N =/= G (possible if the con-
jecture is validated) and consider MN" because MNN<JM and M
M/Me e then M N 1 and G MN consequently M=GIN is

solvable. Therefore G is 3-max-core and hence solvable by (3) of [1].
To illustrate the difficulty with the conjecture we note that in A, the
the alternating group on seven letters, the Sylow subgroups and the
centralizers of involutions are contained in simple maximal subgroups
(see [2]).

A group G is called an A-group whenever G is a solvable group
all o whose Sylow subgroups are abelian. If we let Z(G) denote the
hypercenter of G, our main result may be stated as ollows"

(5) Theorem. If G is a 3-core group then G/Z(G) is an A-
group.

We require

(6) Lemma. Let G be a -core group with Z(G)-I. Then G
has a p-Sylow subgroup P satisfying"

G F(G)P, P F(G) 1, P cyclic, and NG(P) P.
Proof. G is solvable by (3) of [1] and hence, by (7)of [1], G/F(G)

is cyclic of order a power of some prime p. Let P be a p-Sylow sub-
group of G then G F(G)P. If F(G) P#= 1, then there is some element
1 =/= x e F(G) Z(P) (p. 301, [3]). But F(G) is nilpotent and P F(G) is
a p-Sylow subgroup of F(G); hence x e Z(F(G)). It ollows that
x e Z(PF(G))- Z(G) 1. Therefore P F(G) 1 and P G/F(G)
eN.

Now let x N(P), x of prime order qCp, and let H--(x,P--(xP.
Now if H has a non-trivial p-Sylow subgroup T, then T--He P<He.
It follows that T<G so T_F(G), a contradiction. Because G is a N-core group, then Ha--(x. But then H=(x}P so x e Ca(P), while
x.e Z(F(G)) since (x} is a minimal normal subgroup of G (p. 277, [3]).
Therefore x e Z(G)= 1, and we are forced to conclude that Ne(P)-P.

Proof of (5). Let G be a minimal counterexample. Note that if
T is a proper subgroup or factor group of G then T is 3-core group
and so T/Z(T) is an A-group, by induction. Therefore, if Z(G):/:I,
then G/Z(G) is an A-group, or it has trivial center. It follows that
Z(G)--Z(G)--1, and hence by the lemma G has a cyclic p-Sylow sub-
group P satisfying" G F(G)P, F(G) P 1, Na(P) P. For simplicity,
denote F(G) by F.
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We show next that G has a monolith K (that is, a unique minimal
normal subgroup). Let N and N be minimal normal subgroups of G,
N=/=N so NN--I. Define T_N by T/N--Z(G/N)-Z(G/N)
(i-- 1,2) and put n max {n,n}. Then T-{g e G [g, x, x, ., x] e N,
for all x, x, ., x e G} so T T-- {g e G l[g, x, ., x] e N N- 1,
for all x,...,x e G}<_Z(G)-I. Now by induction, G/T(G/N)
/Z(G/N) is an A-group, and hence G-G/(T T) must be an A-group,
a contradiction. Therefore G has a monolith K. Since the Sylow sub-
groups of F are normal in G, F must have prime power order then, say
IFI--q, nd K<_F.

If 1:/:NF and N<JG then we can show that N is abelian and G/N
is an A-group. We begin by noting that since N(P)=P--G/F then
(p. 737, [3]) P and its conjugates are the system normalizers and Carter
subgroups of G. This is also true for P in NP and for NP/N in G/N
(p. 737, [3]). Therefore Z(NP)<_P and Z(G/N)<_NP/N (p. 729, [3]).
It ollows that the q-Sylow subgroup at NP/Z(NP) is isomorphic to
N, while that of (G/N)/Z(G/N) is isomorphic to FIN. By induction

NP/Z(NP) and (G N) Z(G/N) are A-groups and hence N and F/N
are abelian. Because F/K is abelian but F is not, K=F’.

In addition, we can show that every abelian subgroup of F(G) has
at most two generators. By considering the subgroup generated by
the elements of order q, it suffices to show that F(G) contains no ele-
mentary abelian subgroups of order greater than q. Let H be ele-
mentry belin of order q. Because H/H e then H has order
q or q and K<_H (since G is monolithic). If IKl=q then let TK
have orderp. AgainT/ToesoTlandwemusthaveK<_T,
a contradiction. [This proves that in G, IKI<_q; for, as a minimal
normal subgroup of the solvable group G, K must be elementary abeli-
an.] Now suppose IKI-q and let x e K and y e H--K. Then (x, y}--T
is elementary abelian of order p, so To:/= 1. But K: T, contradicting

the fact that K was the monolith of G. Finally, when IKI-P, take T
to be the complement o K in H; again, T:/= 1, a contradiction.

At this point we could appeal to some rather deep results o Black-
burn and o Thompson on the characterization of groups o prime
power order whose abelian normal subgroups are at most two generator
(see pp. 343-346, [3]), but elementary methods suffice. First, suppose
q is odd. Because F’----K, F has nilpotent class 2, so F is regular (p.
322, [3]). Consider [2- (F) (x e Fix 1}. Either t9=F or/2, as a
normal subgroup o G, properly contained in F, is abelian with at most
two generators. In this latter case 191_<q; but if 191-q, F must be
cyclic (p, 310, [3]), so 191=q and F is metacyclic (p. 337, [3]). It fol-
lows that K is cyclic and so of order q. Suppose H is any one of the
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other q subgroups of order q of 2. If No(H)glP=Pl then consider
HP" (HP)e :/: 1 so K

_
HP, contradicting that H<3HP is the q-Sylow sub-

group of HP. Therefore P and its non-trivial subgroups act as permu-
tation groups on the subgroups of order q of t, fixing only K, from
which we deduce p[q, a contradiction.

Therefore F=t0, and by regularity must be of exponent q. If H
is maximal in F then (F)_He so [H" He[_< q; urthermore He is abelian
with at most two generators, and has exponent q, so [He[_ q. Hence
[F[_ q. Now the group of order q, exponent q and nilpotent class 2,
has derived group of order q and center o order q, and so the argu-
ment of the above paragraph, with the center in place of/2, shows that
F cannot be this group. Hence [F[-q, [K[-q. Again we can use the
above argument to deduce that no subgroup (of F) of order q2 is
normalized by any non-trivial subgroup of P. In this way P acts as a
permutation group on the q + 1 subgroups of order q, the stabilizer of
each point being trivial. Hence IP[ divides q / 1. On the other hand
]KI-q,K<G, Z(G)-I, and so ]N(K)/C(K)] is a non-trivial divisor o
q--1, the order of the automorphism group o K. Therefore p divides
q-- 1, as well as q + 1. Consequently p- 2. Let x 1, 1:/: x e P. Then,
as we have remarked, x moves every subgroup of order q, so x cannot
fix any subgroup o order q of F/K, or in turn any non-trivial element
of F/K. But the only fixed-point-free automorphism of order 2 is the
inverting automorphism (p. 506, [3]) which fixes all subgroups, a con-
tradiction.

We are orced to conclude that q--2. If [K[--q--2 then K<_Z(G)
=1, so we must have ]K[=4. Let H--(x,x, q(F)} be any subgroup
of F satisfying [H" q(F) [-- 4, which is possible since F is not cyclic. Now
Ha>_q(F) since q(F)<G, but H:/::(F) because H/q(F) is not cyclic.
And if [H" H[--2, say Ha--(x, q(F)}, then Ha/q(F) is a normal sub-
group of order 2 o G q(F), contradicting that Zoo(G q(F)) <_P(F) /(F)
(derived in proving F’-K). Therefore H--H if H :/:F then F has an
element x with L (x, x, q(F)} #:H, [L" q(F)[= 4 and so L<:]G. But
then (x, (F)} H L<G, which we showed above was a contradiction.
It ollows that IF" (F)[--4 and consequently F’--K must be cyclic
(p. 258, [3]), a contradiction.

This completes the proof.
Theorem (5) does not generalize to -core groups" for example, the

group G-(a, b[a-b-l, a-a-}, which is the unique subgroup of
index 2 in the holomorph of the cyclic group of order 49, has Z(G)
Z(G)= 1 and both G/G’ and G’ are cyclic, so G is -core, but G has

a non-abelian Sylow subgroup. *)

*) The writer thanks Dr. A. H. Rhemtulla (Edmonton) for this example, and for
introducting me to the problem of -core groups.
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The dihedral groups provide an elementary example of non-
Hamiltonian -core groups. Further properties of f -core groups,
and in particular (R)-core groups will be explored in a later paper.
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