
28 Proc. Japan Acad., 48 (1972) [Vol. 48,

8 On Uniqueness and Estimations for Solutions of Modified
Frankl’ Problem for Linear and Nonlinear

Equations o Mixed Type

By Megumi SAIG0
Institute of Mathematics, Faculty of Engineering,

Kumamoto University

(Comm. by Kinjir6 KUNUGI, M. J..., Jan. 12, 1972)

1. Introduction. Concerning the Frankl’ problem for equations
of mixed type which has been proposed by F. I. Frankl’ (see [3] and
references quoted there), the uniqueness and the maximum principles
are discussed under some restrictions by many authors in USSR using
the method of singular integral equations or the abc method. In the
present paper, with the intention of using Agmon, Nirenberg and
Protter type maximum principle [1] we slightly modify the boundary
condition of the problem on some hyperbolic boundary in such a way
as the directional derivative of the solution in the direction of a char-
acteristic is given, while in the Frankl’s original problem the derivative
with respect to x is given. Then we prove the uniqueness and lead
some estimations for the solutions of linear and nonlinear problems.
On the basis of the above modification, we infer that we shall be able
to return to the discussion of the original problem, e.g. the uniqueness
of the solution and the existence of a weak solution, but these matters
will be discussed elsewhere.

2. Definitions and problems. Let K(y) be a function of y defined
and twice continuously differentiable on an interval (--y, Y2) where y,,
y20, and which has the property yK(y)0 for y :/=0.

We shall define a domain tO in the x, y-plane satisfying the con-

dition that the ordinates of the points of the closure tO are contained in
the interval (--y,, Y2) as follows. Let us take two points A(a, 0) and
B(b, 0)on the x-axis with a <b and let C be the intersection point of
two curves in y <0, one issuing from A has the slope 0__ dx/dy

4’ K(y) and the other issuing from B has the slope 0_< dx / dy < 4’K(y).
We shall denote the arcs AC and BC by 7 and 72, respectively. Further,
let D(d, 0) and E(e, 0) be two points on the x-axis with d <a, e b and
let a be a Jordan arc in y0 joining D and E where it is assumed that
the length of a is not less than the length of 7,. Let F be a point on

a such that the length of the arc DF denoted by ao equals I. /2 shall be
the domain enclosed with the curve ACBEFDA. Let
and D2-/2 g {y <0}.
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In 9, we shall consider the following differential operators"
( 1 Tu--K(y)u /u,
( 2 ) Lu-- Tu+ a(x, y)u + b(x, y)u + c(x, y)u,
where a(x, y), b(x, y) e C(12) C(9) and c(x, y) e C(9).

In ., we shall define two directional derivatives v--/--K(y)v-t-v
and v,-----K(y)v/v for a function v(x, y) in the directions of the
characteristics dx / dy-- K(y) and dx /dy- / K(y), respectively.
Let v. on a0) denote the directional derivative for a function v(x, y) in
the direction of the vector whose inner product with the inner nor-
mal vector to a0 is positive.

Definition. Let us consider the following six functions defined
and continuous on each part of the boundary of/2"

(x, y) on a \a0, .(x) on DA, (x) on BE,
(x, y) on , (x, y) and (x, y) on 0,

where (e)--gi(e, 0)and .(d)-(a)-d2(d, 0). We shall say a func-
tion u(x, y) defined on /2 satisfies the boundary condition u e B(, .,,,, gi), if it satisfies the relations

(u(x, y) (x, y) on a \ao, u(x, 0) (x) on DA,
u(x, 0)--(x) on /i, u,(x, y)=,(x, y) on y,( 3
u(x, y)--u(X, Y)--(x, y) for (x, y) e 60 and
[(X, Y) e and u.(x, y)--(x, y) on a0,

where in the fifth relation (X, Y) e corresponds to (x, y) e 60 in such
a way that the length of the arc from A to (X, Y) is equal to the length
of the arc from D to (x, y).

We shall consider a set of functions u(x, y)which are defined on
9, belong to C(9) C(9), have the directional derivatives u. on a0 and
have the directional derivatives u, which are continuous up to y inclu-
sive. Let us denote temporarily such a set by C(9).

Problem I. To seek a unction u(x, y) belonging to C2(9) which
satisfies the equation
4 ) Lu-f(x, y)

in/2 and the boundary condition
( 5 ) u e 0),
where f(x, y) is an arbitrary continuous function defined on/2. Such
a function u(x, y) is called "regular solution of Problem I".

Problem II. To seek a function u(x, y) belonging to C2(2) which
satisfies the equation
( 6 ) Tu--f(x, y, u, ux, u)
in/2 and the boundary condition (5), where f(x, y, z, p, q) is an arbitra-
ry continuous function defined on R. Such a function u(x, y) is

1) In what follows the arc or interval with a bar contains its end points,
but the one without a bar does not.
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called "regular solution of Problem II".
Definition. When the following relations hold for the coefficients

K, a, b, c we say that the operator L satisfies the condition (A)"
in

a+b/--K+(/--K)<O in(A)
4(--K)c+[a--b/--K+3(/--K)].[a+b/--K+(/--K)]

2/ K[a+ b/--K+ (--K)] 0 in
Definition. When the following relations hold or the function K

and the derivatives of f(x, y, z, p, q), we say that the operator T and
the function f satisfy the condition (B)"

(fzOingR,
(B) f+fq=--(--g)>O in 9R,

4(--K)L + [-f+fJ--+3(J-K)]. [f +fJ--K--(--K)]
--2--K[f+f--K--(--K)]O in 9R.. Maximum principle. Theorem 1. Let the operator L saris-

fy the condition (A). If a function u(x, y) which is defined on 9 and
belongs to C(9) satisfies the inequalities LuO in 9, uO on , u(x, y)
u(X, Y) where (x, y) e o and (X, Y) e are corresponding points
andu0 on ao, then the positive maximum value of u in 9 cannot be
attained except on DA U BE U aao.

To prove this theorem, we need the ollowing lemmas, which may
be proved in a similar manner as in Agmon, Nirenberg and Protter [1],
Oleinik [4] and Protter and Weinberger [5].

Lemma 1. Let the operator L satisfy the condition (A) and let us
consider a function u(x, y) which is defined on 9, belongs to C(9)
C(9) and has the directional derivative u which is continuous up

to inclusive. If the function u(x, y) satisfies the inequalities LuO
in 9 andu0 on 1, then the positive maximum value of u in 9 can-
not be attained except on AB. Moreover, if the value is attained
at some point (Xo, O)e AB, then we have

lira in U(Xo, y)-U(Xo, O) 0.

Lemma 2. Let a function u(x, y)which is defined on 9 and be-
longs to C(9) C(9) satisfy the inequality Lu O in 9. Assume c 0
in 9. Then the positive maximum value of u in 9 cannot be attained
at any point in the interior of 9. Moreover, if the value is attained
at some point (Xo, Yo) e ao AB, then we have

lim sup U(Xo +a, Yo +a) U(Xo, Yo) 0,

where the inner product of the vector -(, ) and the inner normal
vector to ao or AB at (Xo, Yo) is positive.

Proof of Theorem 1. By virtue of Lemma 1 the positive maxi-
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mum value of u in 9 is not attained at an interior point o 9 and on
-, and by Lemma 2 also not at an interior point of f2. Therefore it
is attained at a point of the boundary of 9 except or at a point o AB.
The case when the point lies on AB is impossible to occur by Lemmas
1 and 2. I the maximum point lies on yl, the maximum must be at-
tained at a corresponding point on a0 rom the assumption o the theo-
rem, and then at that point we must have u0 owing to Lemma 2.
This contradicts with the assumption of the theorem. Thus the maxi-
mum cannot be attained on and a0. This completes the proof.

Remark 1. If c0, the results of Theorem 1 and Lemmas 1, 2
hold without the assumption o positivity o the maximum value.

4. Uniqueness and estimations. Using Theorem 1 we have the
following theorems.

Theorem 2. If the operator L satisfies the condition (A), Problem
I has at most one solution.

Theorem . Let the operator L satisfy the condition (A) and
moreover have the property c-kO with a constant k. If the

function u(x, y)is a regular solution of Problem I, there holds the esti-
mation

u maxI+max+max
( 7 ) + C(max l4I+ max I] +max [ ){4+(C2/k) max

+laI+Ibl+lcl+ l]}+(1/k2) max [fI in ,
where the constants C and C are independent of the coecients in L
and the boundary functions. Here it is required that for arbitrary
continuous functions +4(x, y) on , +(x, y) on o and +,(x, y) on o, the
problem Lu=O with u e B(O, O, O, 4, ,) has a regular solution.

Theorem 4. Let the operator L satisfy the condition (A). If the

function u(x, y) is a regular solution of Problem I, there holds the esti-
mation

]u]max levi+ max I021+ max 3] + C3(max ]t]+ max(8) + max levi) + C, max Ifl in ,
where the constants C and Ct are independent of the coecients in L
and the boundary functions. Here it is required that for arbitrary
continuous functions Z(x, y) on 9, +(x, y) on , +(x, y) on eo and
+(x, y) on fro there exists a regular solution of the problem Lu- Z with
u e B(O, O, O, ,, , ).

Theorem . Let the assumption of Theorem 3 be satisfied. Then
a solution u of Problem I which has a bounded second derivative u
and bounded first derivatives u, uv on 9 depends continuously on the

coecients of L, the function f and the boundary functions.
Theorem 6. Let the operator T and the function f(x, y, z, p, q)

C(9 xR) satisfy the condition (B). Then Problem II has at most one
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solution.
Theorem 7. Let the operator T and the function f(x, y, z, p, q)

C(9R) satisfy the condition (B). Assume that f], fl, fl are
bounded on 0 R and fz>_kO on 1)R for some constant k. Then
if the function u(x, y) is a solution of Problem II, there holds the esti-
marion

[ul_<max 151+ max 15.1 + max
(9) +C(max ll+max ll+max ll){4+(C/M) max

+ (1/k9 max If(x, y, O, O, 0) in 9,
where the constant C is independent of K, f and the boundary func-
tions, and C depends only on the bounds of the derivatives of f Here
it is required that there exists a regular solution of the problem men-
tioned in Theorem 3 for the operator L having ,2i, and for a, b and
c, respectively, where

,2I- (x, y, tu, tu, tu)dt, B-- (...)dr, d-- (...)dr.

Theorem 8. Let the operator T and the function f(x, y, z, p, q)
C() R) satisfy the condition (B). Assume that fz.l, f 1, fql are
bounded on D R. Then, if the function u(x, y) is a solution of Prob-
lem II, there holds the estimation

lul<--max levi+ max levi+ max 1+ C(max Il+max(10) + max , )+ C8 max If(x, y, 0, 0, 0) in
where the constants C7 and Cs are independent of K, f and the boundary
functions. Here it is required that there exists a regular solution of
the problem mentioned in Theorem 4 for L with the coefficients , ,
and C described in Theorem 7.

Remark 2. The results in this paper remain valid in each case of the
modifications (i) the alteration of the order of the points A and D or B
and E, i.e. a_< d or b _> e, (ii) the alteration of the definition of the arc
such that it has the slope dx/dy-/--K(y) except near the point C and
(iii) the alteration of the definition of the arc such that it has the
slope dx/dy---/--K(y), which appear in the Tricomi boundary con-
dition.
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