No. 1]

6. Perfect Class of Spaces

By Keiô NAGAMI

Department of Mathematics, Ehime University

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 12, 1972)

The author introduced in [6] the notion of perfect class of spaces and showed that the class of ν -spaces is perfect. Recall that a class \mathbb{C} of spaces is said to be perfect if the following five conditions are satisfied.

(1) If $X \in \mathfrak{C}$, then X is normal.

(2) If $X \in \mathbb{S}$ and $Y \subset X$, then $Y \in \mathbb{S}$.

(3) If $X_i \in \mathbb{G}$, $i=1, 2, \cdots$, then $\Pi X_i \in \mathbb{G}$.

(4) If $X \in \mathbb{C}$, then there exists $Z \in \mathbb{C}$ with dim $Z \leq 0$ such that X is the image of Z under a perfect mapping.

(5) If $X \in \mathbb{C}$ and Y is the image of X under a perfect mapping, then $Y \in \mathbb{C}$.

It is to be noted that the first three conditions imply that each element of \mathfrak{C} is perfectly normal. The aim of this paper is to show the existence of the maximal perfect subclass in the class of paracompact σ -spaces. A characterization theorem of dimension of cubic μ -spaces will also be stated. All spaces in this paper are assumed to be Hausdorff and all mappings to be continuous. The suffix *i* runs through the positive integers. Definitions for undefined terminologies can be seen in [6]. The discussion with Professor K. Morita at Shuzenji Hot Spring Symposium, 1970, was suggestive to the present study.

Lemma 1. If X is a paracompact Σ -space with dim X=0 and Y is a paracompact Morita space with dim Y=0, then dim $(X \times Y)=0$.

This can be proved by almost the same way as in the proof of [3, Theorem 3].

Lemma 2 ([1, Theorem 4]). Let X be the inverse limit of $\{X_i, \pi^i_j\}$, where each X_i is a normal space with dim $X_i \leq n$ and each π^i_j is open. If X is countably paracompact, then X is a normal space with dim $X \leq n$.

Lemma 3. Let X_i , $i=1, 2, \dots$, be paracompact Σ -spaces with dim $X_i=0$. Then dim $(\prod X_i)=0$.

Proof. Since a Σ -space is a Morita space by [2, Theorem 2.7], dim $(X_1 \times X_2) = 0$ by Lemma 1. Let $\prod_{i \leq j} X_i$, j > 2, be an arbitrary finite product. Since $\prod_{i < j} X_i$ is a paracompact Σ -space by [2, Theorem 3.13], we can prove easily dim $(\prod_{i \leq j} X_i) = 0$ by induction with the aid of Lemma 1. Since the infinite product $\prod X_i$ is paracompact by [2, Theorem 3.13], then dim $(\prod X_i) = 0$ by Lemma 2. The proof is finished. **Theorem 1.** Let \mathbb{S} be the class of all 0-dimensional paracompact σ -spaces, their perfect images and the empty set. Then \mathbb{S} is perfect.

Proof. The condition (3) is non-trivial, while the other four conditions are almost evident to be true by the definition of \mathfrak{C} . To check (3) let $X_i \in \mathfrak{C}$, $i=1, 2, \cdots$. Let Z_i be a paracompact σ -space with dim $Z_i \leq 0$ such that X_i is the image of Z_i under a perfect mapping f_i . Then $\prod X_i$ is the image of $\prod Z_i$ under the perfect mapping $\prod f_i$. Since dim $(\prod Z_i) \leq 0$ by Lemma 3, $\prod X_i \in \mathfrak{C}$ and the proof is finished.

Obviously the class of ν -spaces in [6] is a subclass of the above \mathfrak{C} . The author does not know whether these two classes are distinct.

Lemma 4. Let X and Y be paracompact σ -spaces with dim $X \leq n$ and f a perfect mapping of X onto Y. If for each point y of Y, $f^{-1}(y)$ consists of exactly $k(<\infty)$ points, then dim $Y \leq n$.

Proof. Let \mathfrak{F}_i , $i=1, 2, \cdots$, be locally finite closed collections of Xsuch that $\bigcup \mathfrak{F}_i$ forms a network of X and $\mathfrak{F}_i \subset \mathfrak{F}_{i+1}$ for each i. Since $f(\mathfrak{F}_i)$ is point-finite and closure-preserving, it is locally finite in Y. Let \mathfrak{F}_i be the collection of all sets of type $\bigcap_{j=1}^k f(F_j)$ such that $F_j \cap F_m = \emptyset$ whenever $1 \leq j < m \leq k$ and $\{F_1, \cdots, F_k\} \subset \mathfrak{F}_i$. If we set $H = \bigcap_{j=1}^k f(F_j)$, then $f \mid F_j \cap f^{-1}(H)$ is a homeomorphism of $F_j \cap f^{-1}(H)$ onto H. Hence dim $H \leq \dim X \leq n$. Let H_i be the sum of all elements of \mathfrak{F}_i . Then dim $H_i \leq n$, since \mathfrak{F}_i is a locally finite closed collection of Y.

Let y be an arbitrary point of Y and $\{x_1, \dots, x_k\}$ be the inverse image of y under f. Then there exist \mathfrak{F}_m and elements F_1, \dots, F_k of \mathfrak{F}_m such that $x_j \in F_j$ for $j=1, \dots, k$ and $F_j \cap F_m = \emptyset$ whenever $1 \leq j < m$ $\leq k$. Thus $y \in \bigcap_{j=1}^k F_j \in \mathfrak{F}_m$. This implies that $Y = \bigcup H_i$ and hence dim $Y = \max \dim H_i \leq n$. The proof is finished.

As for the definition of a replica of a σ -metric space in the following, see [5].

Lemma 5. Consider the diagram:

$$\begin{array}{cccc} Z & \stackrel{f}{\longrightarrow} & X \\ \sigma & & & \downarrow^{\rho} \\ \sigma Z & \stackrel{\hat{f}}{\longrightarrow} & \rho X \end{array}$$

Let X be a paracompact σ -metric space, ρX its replica, $\rho: X \to \rho X$ the identity mapping, σZ a metric space and $\hat{f}: \sigma Z \to \rho X$ a perfect mapping onto. Let the set Z be identical with σZ , σ the identity transformation of Z onto σZ and $f: Z \to X$ the transformation such that $\hat{f}\sigma = \rho f$. Let \mathfrak{U} be the topology of X and \mathfrak{V} the topology of σZ . Then Z with the base $f^{-1}(\mathfrak{U}) \land \sigma^{-1}(\mathfrak{V})$ is a paracompact σ -metric space such that σZ is a replica of Z and f is a perfect mapping.

This is essentially proved in [5, Theorem 6]. A space X is said to be a cubic μ -space if $X = \prod X_i$, where each X_i is a paracompact σ -

metric space.

Theorem 2. Let X be a cubic μ -space. Then the following four conditions are equivalent.

i) dim $X \leq n$.

ii) X is the image of a μ -space Z with dim $Z \leq 0$ under a perfect mapping of order $\leq n+1$.

iii) X is the sum of n+1 subsets H_i , $i=1, \dots, n+1$, with dim $H_i \leq 0$.

iv) Ind $X \leq n$.

Proof. That i) implies ii): Let X'_i be a replica of X_i . Set $P_i = \prod_{j \leq i} X_j \times \prod_{j \geq i} X'_j$.

Then P_i is σ -metric. Especially P_1 is metric. X is the inverse limit of $\{P_i\}$ with the natural projections $g^i{}_j$. Let P_{ik} be the product of the first k factors of P_i . Then P_{ik} is σ -homeomorphic onto the product of the first k factors of X, say P_{ik}' , where a mapping onto is said σ homeomorphic if the domain is the countable sum of closed sets each of which is mapped homeomorphically to a closed set of the range. Hence we have dim $P_{ik} = \dim P_{ik}' \leq \dim X \leq n$. Since P_i is the inverse limit of $\{P_{ik} : k = 1, 2, \cdots\}$, we have dim $P_i \leq n$ by Lemma 2. Since P_1 is metric, there exist a metric space Q_1 with dim $Q_1 \leq 0$ and a perfect mapping f_1 of Q_1 onto P_1 with ord $f_1 \leq n+1$ (cf. [4, Theorem 12.6]). Look at the diagram:

$$\begin{array}{c} Q_i \xrightarrow{f_i} P_i \\ h^{i_1} \downarrow & \downarrow g^{i_1} \\ Q_1 \xrightarrow{f_1} P_1 \end{array}$$

By Lemma 5 there exist, for each *i*, a paracompact σ -metric space Q_i , a perfect mapping f_i of Q_i onto P_i and a σ -homeomorphic mapping $h_{i_1}^i$ of Q_i onto Q_1 such that $f_1h_1^i = g_1^if_i$ and such that the topology of Q_i is the weakest one to enable f_i and h_1^i to be continuous. For each pair i > j define $h_j^i \colon Q_i \to Q_j$ in such a way that $h_j^i = (h_j^i)^{-1}h_1^i$. Then $f_jh_j^i$ $= g_j^if_i$. Let \mathfrak{U}_1 be the topology of Q_1 and \mathfrak{B}_k the topology of P_k . Since $(h_j^i)^{-1}((h_j^i)^{-1}(\mathfrak{U}_1) \wedge f_j^{-1}(\mathfrak{B}_j))$

$$=(h^{i}{}_{1})^{-1}(\mathfrak{U}_{1})\wedge(h^{i}{}_{j})^{-1}f_{j}{}^{-1}(\mathfrak{B}_{j})\ =(h^{i}{}_{1})^{-1}(\mathfrak{U}_{1})\wedge f_{i}{}^{-1}(g^{i}{}_{j}){}^{-1}(\mathfrak{B}_{j})\ \subset(h^{i}{}_{1})^{-1}(\mathfrak{U}_{1})\wedge f_{j}{}^{-1}(\mathfrak{B}_{j}),$$

then $h^i{}_j$ is continuous. Let Z be the inverse limit of $\{Q_i\}$ and $f: Z \to X$ a transformation defined by: $g_1 f = f_1 h_1$, where $g_i: X \to P_i$ and $h_i: Z \to Q_i$ are the projections. Then f is obviously continuous. Every pointinverse under f is compact, since it is homeomorphic to the corresponding point-inverse under f_1 . To prove the closedness of f let F be a closed set of Z and p a point from X - f(F). Since $f^{-1}(p) \cap F = \emptyset$ and

No. 1]

 $f^{-1}(p)$ is compact, there exist a k and an open set U of Q_k such that $f^{-1}(p) \subset h_k^{-1}(U) \subset Z - F$. Set $V = P_k - f_k(Q_k - U)$. Then V is open by the closedness of f_k . Since $g_k^{-1}(V)$ is an open neighborhood of p and $g_k^{-1}(V) \cap f(F) = \emptyset$, p is not in the closure of f(F), proving the closedness of f. Of course ord $f = \operatorname{ord} f_1 \leq n+1$. Since dim $Q_i = \dim Q_1 \leq 0$ for each *i*, dim $Z \leq 0$ by Lemm 2.

That ii) implies iii): Set $H_i = \{x \in X : |f^{-1}(x)| = i\}$. Then X is the sum of $\{H_i: i=1, \dots, n+1\}$. Since $f^{-1}(H_i)$ and H_i are paracompact σ spaces, dim $H_i \leq 0$ by Lemma 4.

That iii) implies iv) or iv) implies i) is well known to be true for merely hereditarily normal spaces or normal spaces, respectively (cf. [4]). The proof is finished.

References

- [1] K. Nagami: A Note on the Normality of Inverse Limits and Products. Proc. International Symp. at Herceg-Novi on Topology and its applications, 261-264 (1968).
- [2] ——: Σ-spaces. Fund. Math., 65, 169-192 (1969).
 [3] ——: A note on the large inductive dimension of totally normal spaces. J. Math. Soc. Japan, 21, 282-290 (1969).
- [4] ——: Dimension Theory. Academic Press, New York (1970).
- [5] ——: Dimension for σ -metric spaces. J. Math. Soc. Japan, 23, 123–129 (1971).
- [6] ——: Normality of products. Proc. Nice Congress of International Mathematicians (to appear).