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6. Perfect Class o Spaces

By Kei6 NAGAMI
Department of Mathematics, Ehime University

(Comm. by Kinjir5 KUNUGI, M. Z. A., Jan. 12, 1972)

The author introduced in [6] the notion of perfect class of spaces
and showed that the class of -spaces is perfect. Recall that a class
of spaces is said to be perfect if the following five conditions are saris-

(1) If Xe , then X is normal.
(2) IfXeandYcX, thenYe.
(3) IfX, e,i--l, 2,...,thenIIX, e.
( 4 ) If X e , then there exists Z e with dim Z__< 0 such that X

is the image of Z under a perfect mapping.
( 5 If X e and Y is the image of X under a perfect mapping,

then Y e .
It is to be noted that the first three conditions imply that each

element of is perfectly normal. The aim of this paper is to show the
existence of the maximal perfect subclass in the class of paracompact
a-spaces. A characterization theorem of dimension of cubic /-spaces
will also be stated. All spaces in this paper are assumed to be Haus-
dorf and all mappings to be continuous. The suffix i runs through
the positive integers. Definitions for undefined terminologies can be
seen in [6]. The discussion with Professor K. Morita at Shuzenji Hot
Spring Symposium, 1970, was suggestive to the present study.

Lemma 1. If X is a paracompact X-space with dim X--0 and Y
is a paracompact Morita space with dim Y=0, then dim (X Y)=0.

This can be proved by almost the same way as in the proof of [3,
Theorem 3].

Lemma 2 ([1, Theorem 4]). Let X be the inverse limit of {X,, }
where each X is a normal space with dimXn and each is open.

If X is countably paracompact, thenX is a normal space with dim X n.
Lemma . Let X, i--l, 2,..., be paracompact X-spaces with

dim X-- O. Then dim ( X)-- 0.
Proof. Since a X-space is a Morita space by [2, Theorem 2.7],

dim (X X)-0 by Lemma 1. Let X, ]>2, be an arbitrary finite
product. Since <X is a paracompact X-space by [2, Theorem 3.13],
we can prove easily dim(X)=0 by induction with the aid of
Lemma 1. Since the infinite product X is paracompact by [2,
Theorem 3.13], then dim (X)=0 by Lemma 2. The proof is finished.

fled.
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Theorem 1. Let be the class of all O-dimensional paracompact
a-spaces, their perfect images and the .empty set. Then is perfect.

Proof. The condition (3) is non-trivial, while the other our con-
ditions are almost evident to be true by the definition of . To check
(3) let Xe, i-1,2,.... Let Z be a paracompact a-space with
dim Z =< 0 such that X is the image of Z under a perfect mapping f.
Then [I X is the image of 1-I Z under the perfect mapping I-[f. Since
dim ( Z)<__ 0 by Lemma 3, VI X e and the proof is finished.

Obviously the class of -spaces in [6] is a subclass of the above .
The author does not know whether these two classes are distinct.

Lemma 4. Let X and Y be paracompact a-spaces with dim X__<n
and f a perfect mapping of X onto Y. If for each point y of Y, f-(y)
consists of exactly k( oo) points, then dim Y =< n.

Proof. Let , i=l, 2, ..., be locally finite closed collections of X
such that orms a network of X and/ for each i. Since
f() is point-finite and closure-preserving, it is locally finite in Y. Let

be the collection of all sets of type .= f(F) such that FF-
whenever 1_<_] m_<_ k and {F, ., F} . If we set H--= f(F),
then f lF f-(H) is a homeomorphism of F ( f-(H) onto H. Hence
dim H _<_ dim X<= n. Let H be the sum of all elements of . Then
dim H<n, since is a locally finite closed collection of Y.

Let y be an arbitrary point of Y and {x, ..., x} be the inverse
image of y under f. Then there exist and elements F, ..., F of

such that xeF for ]-1,...,k and FF= whenever l<__]m
k<k. Thus ye(__Fe. This implies that Y-UH and hence

dim Y=max dim H__< n. The proof is finished.
As for the definition of a replica of a a-metric space in the follow-

ing, see [5].
Lemma ;. Consider the diagram:

Z f Z

aZ pX
Let X be a paracompact a-metric space, pX its replica, p" XpX the
identity mapping, aZ a metric space and f" aZ-pX a perfect mapping
onto. Let the set Z be identical with aZ, a the identity transforma-
tion of Z onto aZ and f" Z-X the transformation such that fa pf
Let 1I be the topology of X and the topology of aZ. Then Z with the
base f-() a-() is a paracompact a-metric space such that aZ is a
replica of Z and f is a perfect mapping.

This is essentially proved in [5, Theorem 6]. A space X is said to
be a cubic Z-space if X= X,, where each X, is a paracompact a-
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metric space.
Theorem 2. Let X be a cubic -space. Then the following four

conditions are equivalent.
i) dim X<n.
ii) X is the image of a Z-space Z with dim Z<0 under a perfect

mapping of order <= n+ 1.
iii) X is the sum of n+l subsets H, i-1,...,n+l, with

dim H_<_ 0.
iv) Ind X__<n.
Proof. That i) implies ii)" Let X( be a replica of X. Set

P-- I-I xx I-[ x’.
j<i j_i

Then P is a-metric. Especially P is metric. X is the inverse limit
of {P} with the natural projections g. Let P be the product of the
first k actors o P. Then P is a-homeomorphic onto the product o
the first k actors o X, say P’, where a mapping onto is said a-
homeomorphic if the domain is the countable sum of closed sets each
of which is mapped homeomorphically to a closed set o the range.
Hence we have dim P-dim P’__< dim Xgn. Since P is the inverse
limit of {P" k--1,2, ...}, we have dim P<=n by Lemma 2. Since P
is metric, there exist a metric space Q with dim Q<=0 and a perfect
mapping f o Q onto P with ord fgn+ 1 (cf. [4, Theorem 12.6]).
Look at the diagram:

Qi f P

h,
Q f, p

By Lemma 5 there exist, for each i, a paracompact a-metric space Q,
a perfect mapping f, of Q, onto P, and a a-homeomorphic mapping h*
of Q, onto Q such that fh* g*f and such that the topology of Q, is
the weakest one to enable f, and h to be continuous. For each pair
i] define h*; Q,Q in such a way that h*-(h;)-h. Then fh*

g*f,. Let be the topology of Q and the topology of P. Since
(h)-((h)-()Af-())

(hg-()A (h*)-%-1()
A * -* )-()(hg-(g)

c (h*)-(gl) Af,-l(3,
then h is continuous. Let Z be the inverse limit of {Q} and f" ZoX
a transformation defined by" gf=fh, where g," XP, and h" ZQ
are the projections. Then f is obviously continuous. Every point-
inverse under f is compact, since it is homeomorphic to the correspond-
ing point-inverse under f. To prove the closedness of f let F be a
closed set of Z and p a point from X--f(F). Since f-(p) F=O and
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f-(p) is compact, there exist a k and an open set U of Q such that
f-I(p)ch-I(U)Z-F. Set V--P-f(Q-U). Then V is open by
the closedness of f. Since g-(V) is an open neighborhood of p and
g-(V) f(F)-D, p is not in the closure of f(F), proving the closedness
of f. Of course ord f-ordf<=n/l. Since dim Q-dimQ0 for
each i, dim Z<= 0 by Lemm 2.

That ii) implies iii)" Set H=(x e X" If-(x)l=i}. Then X is the
sum of (H" i--l,..., n+ 1}. Since f-(H) and H are paracompact a-
spaces, dim H<__ 0 by Lemma 4.

That iii) implies iv) or iv) implies i) is well known to be true for
merely hereditarily normal spaces or normal spaces, respectively (cf.
[4]). The proof is finished.
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