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44. Quasi-normal Analytic Spaces
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College of General Education, Téhoku University

(Comm. by Kinjir6 KUNUGI, M. J. A., March 18, 1972)

1. Introduction. Certain analytic spaces are introduced in [3]
(p, 287) for which the weak version of the Riemann extension theorem
holds. An example is also given which is not normal. Such spaces
are called maximal spaces in [1] (p. 44, p. 178) and some theorems are
stated which are extensions from the case of normal spaces. We shall
call these spaces quasi-normal. We shall be concerned with three kinds
of sheaves on an analytic space; that is, the sheaf of germs of holo-
morphic functions, the sheaf of germs of continuous and weakly holo-
morphic functions and the sheaf of germs of weakly holomorphic func-
tions. They are denoted by @, @ and &, respectively.

We examine the relation between @’ and @ in §2. In §3, we first
define the quasi-normality at a point by means of @, and (9,, and then
the quasi-normal space is defined. Some theorems are stated for which
the quasi-normal space is a proper place. In §4, examples are dis-
cussed.

The terminology is that of [4].

2. O,and O,: Local irreducibility. Let X be an analytic space
with the structure sheaf y©. This is also denoted simply by @. We
denote by @, the stalk of © at a point p ¢ X. X decomposes into the
manifold R(X) consisting of regular points and the singular locus &(X).

A weakly holomorphic function f on an open subset U of X is a
complex-valued function defined and holomorphic in R(X)NU and
locally bounded in U. The sheaf of germs of such functions on X is
denoted by yO or by &. The sheaf of germs of continuous and weakly
holomorphic functions on X is denoted by ;@ or ¢@’. Clearly, OcC®’
cO. X isnormal at p if and only if ®,=@,. X is a normal space if
it is normal at every point of X. It is known that if X is normal at p
then X is irreducible there. We prove the following. X is said to be
locally irreducible at p if there exists a neighborhood of p at every point
of which X is irreducible.

Theorem 1. Let X be an analytic space and p e X. Then we have

(1) X is locally irreducible at p if and only if ©,=0,.

(2) The set of points at which X is not locally irreducible is an
analytic subvariety of X.

Proof. It is well known that if X is locally irreducible at p then
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©,=0, (5], p. 114). To prove first that @,= (O, implies the irreduci-
bility of X at p, let X be reducible at p. The germ X, determined by
X at p admits the decomposition into the irreducible branches: X,
=X,UX,U-.-UX,, t=2. Further, the decomposition of R(X,) into
the connected components is given by R(X,)=S8,US,U .- US,; where
each S, is dense in the corresponding branch X; ([4], p. 116). Let f be
a germ of a function at p which takes on the value 1 on S, and the value
0 on R(X,)—S,. Clearly, fec O,. Butfe(O,, because fdoes not extend
continuously at p.

Let now (X, ) be the normalization of X. pis a proper, holomor-
phic mapping of X onto X. As is in [1], the quotient space X=X /R
is defined where R is the equivalence relation: x ~y if and only if p(x)
=p(y). The sheaf 3O /R defined on X’ is naturally isomorphic with a
sheaf on X, which is a coherent analytic sheaf by a result of [2]. More-
over, this sheaf is nothing but the sheaf y©’. We have thus coherent
sheaves on X: @, @ and O.

The set {p e X|O0,+0,} is an analytic subvariety of X and there-
fore the set {p ¢ X|©@,=0,} is open. This implies that X is locally
irreducible at p if @,=0,. Thus, (1) and (2) are proved.

Remark. The locally irreducible space is characterized by @’ =0.
If X is 1-dimensional, X is locally irreducible at p if and only if it is
irreducible there ([6]). Hence, the irreducibility is also equivalent with
0,=0, in that case.

3. Op,and @),: Quasi-normality. Definition. An analyticspace
X is quasi-normal at p € X if and only if ©,=0),. If X is quasi-normal
at every point of X then we shall say that X is a quasi-normal space.

From the coherence of @ and ¢’ results the following. This and
Theorem 1, (2) imply that the set of points at which X is not normal is
the union of two analytic subvarieties of X.

Corollary. The set of points at which X is not quasi-normal s
an analytic subvariety of X.

We state some theorems for which the quasi-normality plays an
essential role. Theorem 3 and Theorem 4 are quoted from [1].

Theorem 2. Let X be a quasi-normal space and A an analytic
subvariety of X with dim, A<dim, X—1 for every xcA. If o isa
continuous mapping of X into an analytic space Y which is holomor-
phic on X —A, then ¢ is holomorphic on X.

Theorem 3. Let X be a quasi-normal space and ¢ o continuous
mapping of X into an analytic space Y. Let p be a proper, holomor-
phic mapping of an analytic space Z onto X such that po p is holomor-
phic. Then ¢ is holomorphic.

Theorem 4. Let X be o quasi-normal space and ¢ o continuous



No. 3] Quasi-normal Analytic Spaces 183

mapping of X into an analytic space Y. Let G be the graph of ¢, G
={@&,p@))|re X}CTXXY. If G is an analytic subvariety of XX Y,
then ¢ is holomorphic.

The theorem of Radé is stated as follows.

Theorem 5. Let X be a quasi-normal space and ¢ ¢ continuous
mapping of X into an analytic space Y. If ¢ is holomorphic on X
—&"(q) for some qe Y, then ¢ is holomorphic on X.

Proof. Let y© and y© be the structure sheaves of X and Y. ¢*
is induced by ¢: ¢*(B)=ho ¢ for he yO, ), *c X.

We must show that ¢*(;0,,) C O, for every x e ¢ '(q). LetV be
a neighborhood of ¢ and let % be a holomorphic function on V. Let
a=n(q). For an open neighborhood U of x such that o(U)CV, kog is
continuous on U and holomorphic in U—¢~'(g). Since

REXNU—o(@QDRX)NU—(hop) N a),
ho¢ is holomorphic on R(X)NU by virtue of the theorem of Radé for
manifolds. U is quasi-normal and, therefore, 2o ¢ is holomorphic on
U. This completes the proof.

Remark. Above theorems do not hold if the quasi-normality con-
dition is deleted from X. In fact, let X={(z, w) € C*|2*—w’=0}, then
X is alocally irreducible subvariety of €% But X is not quasi-normal
at the origin (0,0). The function defined by
w/z, (z,w) e X—(0,0)

0, z=w=0

is continuous and weakly holomorphic on X, but not holomorphic at
(0,0). The graph of the mapping ¢ of X into C is clearly an analytic
subvariety of XX C. Thus, Theorem 4 is not true for this space.
Similarly, Theorem 5 does not hold for X, because R(X)=X—¢ %0).

4. Examples. Let X, ---, X, be the irreducible branches of the
germ X, of X. Let fbe a germ of a function at p. We denote by £;
the restriction of f on X;: f;=f|X;, and by ,0, the ring of germs of
holomorphic functions on X;. 0, has the same meaning.

Lemma. Suppose that X has the following property:

1) X, are quasi-normal at p, 1=1,2,...,¢.

) If fis an arbitrary germ of a continuous function at p such
that f, € 0y, 1=1,2, ..., 1, then fe xO,.

Then, X s quasi-normal at p.

Proof. Let fe(®,. Then f;e,0, by a theorem of Remmert ([5],
p. 127), and therefore f; € ;©, by (1). Hence, fe O, by (2). This com-
pletes the proof.

Theorem 6. LetV be an analytic subvariety of an open subset D
of C* and pe V. Suppose that V, admits the following irreducible de-
composition: V,=V,U---UV,, where there exist an open polydisk 4

oz, w) = {
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=A(p;r) in D, local coordinates w,, - --,w, in 4 and subsets o; of the
set {1,2, - - -, n} such that
ViNd={ze d|w,;2)=0,j € g}, 1<i<t.

Then, VN4 is a quasi-normal space.

Proof. It is sufficient to prove the theorem for the case in which
V is a subvariety of 4=4(0; 1) in C*; V=4,U --- U 4,, where ¢,C{1, - -
.,nyand 4,={(z,, - - -,2,) € 4|2;=0, j e 0;}, 1=<t<t. Moreover, we have
only to prove that V is quasi-normal at the origin 0; to do so, it is
sufficient to show that if f is a continuous function on V such that the
restrictions f;=f|4;, i=1, - -.,t, are holomorphic, then f is holomor-
phic on V.

For t=1, this is clear. We suppose that the assertion is valid for
t—1 and we consider the case in which

V=4,U...-U4;,_,U4, t=2.

Let V!=4,U...Ud,_;; f'=f|V’. Since s’ is holomorphic on V’
from the induction hypothesis and 4 is a Stein manifold, f’ extends to
a holomorphic function 7 on 4. Let x, denote the projection of 4 onto
4,. We define a holomorphic function F on 4 by

F=f’+fz °”z—f~'° Ty
which is seen to be actually an extension of f. In fact, let x ¢ 4..
Then we obtain F/(x)= f'(x,(x)) which implies that

F(2)=fi(z(x)) = f(x).

Next, let x € V. Since V’ is a union of polydisks (of different di-

mensions), we have 7, (V)CV’'N4,. From this follows that
f’ oy (®) = f(m,(x))
=fi(@(x)),
hence we have F'(x)=f(x). This completes the proof.

Remark. Let f,, f5 - -+, fm (m=<n) be holomorphic functions in a
neighborhood U of 0e C® such that f,(00=0, ¢=1,2,...,m, and
(fis fos * * *» ) 18 nonsingular. Let

V={2e U|fDfa@ - [1(D=0, jiea, i=1, ., 1,
where gy, - - -, g, are subsets of {1,2, ..., n}. Then, there exist an open
polydisk 4 in U and local coordinates w,, --.,w, in which w,=f,,
1<j<m. V 1is decomposed into the irreducible branches: VN4
=V,NnAHU ---UV,N4D), where
Vind={ze d|w,2)=0, jeo}, 1<i<t.
Therefore, VN4 is a quasi-normal space.

For the above space, O,=0,<0, at p=0. We show that there
exist varieties which are reducible and not quasi-normal at p, that is,
0,20,20, for some point p.

Lemma. Let V be an analytic subvariety of an open subset D of
CrandpeV. Let V=V,U..-UV,, t=2, bethe irreducible decomposi-
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tion at p for which V;NV;={p} if i+Jj. If V is quasi-normal at p, then
V,, 1<i<t, are also quasi-normal at p.
Proof. Let f,e€,0,. We define a germ f of a continuous function
at p by
2)= {fl(x), xe v _
A fip), xzeV, i>2.

Since 9%(V)=p R(V,)—{p} and V is quasi-normal at p, we have
=1

fev0O,. Therefore, f, €,0,, which completes the proof.

Let V, be an analytic subvariety of an open subset D of C* which
is not quasi-normal at peV,. We can choose a polydisk 4 and co-
ordinates z,, - - -, 2, so that

Vvindn{z=-..=2z=0={p}.
Let V, be any analytic subvariety of {2,=...=2;,=0} through the point
pand let V=V, UV,. Then, V is reducible and not quasi-normal at p.
An example is given by a subvariety of C? defined by the equation:
2(22—w?)=0.
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