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1. Introduction. Certain analytic spaces are introduced in [3]
(p, 287) for which the weak version of the Riemann extension theorem
holds. An example is also given which is not normal. Such spaces
are called maximal spaces in [1] (p. 44, p. 178) and some theorems are
stated which are extensions from the case of normal spaces. We shall
call these spaces quasi-normal. We shall be concerned with three kinds
of sheaves on an analytic space; that is, the shea o germs o holo-
morphic unctions, the sheaf of germs o continuous and weakly holo-
morphic unctions and the sheaf of germs of weakly holomorphic func-
tions. They are denoted by O, C)’ and , respectively.

We examine the relation between C)’ and in 2. In 3, we first
define the quasi-normality at a point by means of (9 and (9, and then
the quasi-normal space is defined. Some theorems are stated or which
the quasi-normal space is a proper place. In 4, examples are dis-
cussed.

The terminology is that of [4].
2. and (p: Local irreducibility. Let X be an analytic space

with the structure sheaf zC). This is also denoted simply by (9. We
denote by 9 the stalk of (C) at a point 79 e X. X decomposes into the
manifold (X) consisting of regular points and the singular locus (R)(X).

A weakly holomorphic function f on an open subset U of X is a
complex-valued function defined and holomorphic in (X)VI U and
locally bounded in U. The sheaf of germs of such functions on X is
denoted byx or by . The sheaf of germs of continuous and weakly
holomorphic functions on X is denoted by z(9’ or (C)’. Clearly,
c (9. X is normal at p if and only if (9= (C). X is a normal space if
it is normal at every point of X. It is known that if X is normal at p
then X is irreducible there. We prove the following. X is said to be
locally irreducible at p if there exists a neighborhood of p at every point
of which X is irreducible.

Theorem 1. Let X be an analytic space and p e X. Then we have
(1) X is locally irreducible at p if and only if
(2) The set of points at which X is not locally irreducible is an

analytic subvariety of X.
Proof. It is well known that if X is locally irreducible at p then
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(C) ( ([5], p. 114). To prove first that ) ( implies the irreduci-
bility of X at p, let X be reducible at p. The germ X determined by
X at p admits the decomposition into the irreducible branches"
=X t2 X t2 Xt, t==_ 2. Further, the decomposition of (X) into
the connected components is given by _(X)=S U SU U St where
each S is dense in the corresponding branch X ([4], p. 116). Let f be
a germ of a function at p which takes on the value 1 on S and the value
0 on (X)--S. Clearly, fe (. Butf-G, becausefdoes not extend
continuously at p.

Let now (X, ) be the normalization of X. is a proper, holomor-
phic mapping of onto X. As is in [1], the quotient space
is defined where R is the equivalence relation" xy if and only if/(x)
=p(y). The sheaf (/R defined on X’ is naturally isomorphic with
sheaf on X, which is a coherent analytic sheaf by a result o [2]. More-
over, this sheaf is nothing but the sheaf z(’. We have thus coherent
sheaves on X" (, 5)’ and (.

The set {p e X I( :/: (,} is an analytic subvariety of X and there-
ore the set p e X )-(} is open. This implies that X is locally
irreducible at p if (C)=. Thus, (1) and (2) are proved.

Remark. The locally irreducible space is characterized by (’= (C).

If X is l-dimensional, X is locally irreducible at p if and only if it is
irreducible there ([6]). Hence, the irreducibility is also equivalent with

(C) in that case.
:. G and (: Quasi-normality. Definition. An analytic space

X is quasi-normal at p e X i and only if G-G. If X is quasi-normal
at every point of X then we shall say that X is a quasi-normal space.

From the coherence o (C) and G’ results the ollowing. This and
Theorem 1, (2) imply that the set o points at which X is not normal is
the union of two analytic subvarieties of X.

Corollary. The set of points at which X is not quasi-normal is
an analytic subvariety of X.

We state some theorems or which the quasi-normality plays an
essential role. Theorem 3 and Theorem 4 are quoted rom [1].

Theorem 2. Let X be a quasi-normal space and A an analytic
subvariety of X with dim A=<dim X-1 for every x e A. If is a
continuous mapping of X into an analytic space Y which is holomor-
phic on X--A, then is holomorphic on X.

Theorem :. Let X be a quasi-normal space and a continuous
mapping of X into an analytic space Y. Let/ be a proper, holomor-
phic mapping of an analytic space Z onto X such that l is holomor-
phic. Then is holomorphic.

Theorem 4. Let X be a quasi-normal space and a continuous
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mapping of X into an analytic space Y. Let G be the graph of , G
={(x,o(x))lxeX}XY. If G is an analytic subvariety of XY,
then o is holomorphic.

The theorem oi Rad5 is stated as ollows.
Theorem 5o Let X be a quasi-normal space and c continuous

mapping of X into an analytic space Y. If is holomorphic on X
-(q) for some q e Y, then is holomorphic on X.

Proof, Let x(C) and r( be the structure sheaves o X and Y.
is induced by p" *(h)= h o for h e (), x e X.

We must show that *(r(())xG for every x e ?-(q). Let V be
a neighborhood of q and let h be a holomorphic function on V. Let
-h(q). For an open neighborhood U of x such that (U) V, h is
continuous on U and holomorphic in U--(q). Since

(X) U-q-l(q) (X) U-(h o)-(o),
h is holomorphic on _(X)gl U by virtue of the theorem of Rad5 for
manifolds. U is quasi-normal and, therefore, h is holomorphic on
U. This completes the proof.

Remark. Above theorems do not hold if the quasi-normality con-
dition is deleted from X. In fact, let X={(z, w) e C21z--w2=O}, then
X is a locally irreducible subvariety of C2. But X is not quasi-normal
at the origin (0, 0). The function defined by

w/z, (z, w) e X-(O, O)(z, w)=
0, z=w=O

is continuous and weakly holomorphic on X, but not holomorphic at
(0, 0). The graph o the mapping o X into C is clearly an analytic
subvariety o X C. Thus, Theorem 4 is not true or this space.
Similarly, Theorem 5 does not hold for X, because (X)--X---(O).

4. lxamples, Let X,...,Xt be the irreducible branches o the
germ X o X. Let f be a germ o a unction .at p. We denote by
the restriction of f on X’J-flX, and by ) the ring o germs o
holomorphic unctions on X. ( has the same meaning.

Lemma. Suppose that X has the following property"
(1) X are quasi-normal at p, i- 1, 2, ., t.
(2) If f is an arbitrary germ of a continuous function at p such

that f e, i-- 1, 2, ., t, then f e
Then, X is quasi-normal at p.

Proof. Let f e (. Then j e (C) by a theorem o Remmert ([5],
p. 127), and therefore 2 e ( by (1). Hence, fe (C) by (2). This com-
pletes the proof.

Theorem 6. Let V be an analytic subvariety of an open subset D
of C and p e V. Suppose that V admits the following irreducible de-
composition" = VI... U Vt, where there exist an open polydist
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=A(p; r) in D, local coordinates w, ..., w in zi and subsets a of the
set 1, 2,..., n} such that

Then, V z] is a quasi-normal space.
Proof. It is sufficient to prove the theorem or the ease in which

V is a subvariety of z]=z](O r) in C V=z] U U z],, where a,{1,
n} and ,-{(z, ..., z) e z][z=O, ] e a,}, 15i_<t. Moreover, we have

only to prove that V is quasi-normal at the origin O; to do so, it is
sufficient to show that if f is a continuous unetion on V such that the
restrictions f, f[ z],, i= 1, ., t, are holomorphie, then f is holomor-
phie on V.

For t= 1, this is clear. We suppose that the assertion is valid or
--1 and we consider the ease in which

V=zi U [3 z],_ U z]t,
Let V’--t(3 U At-; f’=flV’. Since f’ is holomorphic on V’

from the induction hypothesis and zl is a Stein manifold, f’ extends to
a holomorphic unction f’ on A. Let t denote the projection of A onto
At. We define a holomorphic function F on zi by

which is seen to be actually an extension of f. In fact, let x e
Then we obtain f’(x)=f’(ut(x)) which implies that

F(x) ft(t(x)) f(x).
Next, let x e V’. Since V’ is a union of polydisks (of different di-

mensions), we have t(V’)V’ At. From this ollows that

f’ ,(x)-=f(t(x))
--f,(u,(x)),

hence we have F(x)=f(x). This completes the proof.
Remark. Let f, f, .,f (m <__n) be holomorphic functions in a

neighborhood U o 0eC such that f,(0)-0, i=1,2, ...,m, and
(f, f, ..., f) is nonsingular. Let

V--{z e UIf,(z)f(z)...fh(z)-O, ] e a, i=1, ...,
where a, ., a, are subsets o {1, 2, ..., n}. Then, there exist an open
polydisk i in U and local coordinates w,..., w in which w---f,
l<=]gm. V is decomposed into the irreducible branches"
--(V z]) U (V, ), where

V,-{z e zi[w(z)=O, ] e a},
Therefore, V VI i is a quasi-normal space.

For the above space, O-0 at p=0. We show that there
exist varieties which are reducible and not quasi-normal at p, that is,

O O O for some point p.

Lemma. Le$ V be an analytic subvariey of an open subse$ D of
C and p e V. Le V-- V U U Vt, >_2, be the irreducible decomposi-



No. 3] Quasi-normal Analytic Spaces 185

tion at p for which V --{p} if i=/= ]. If V is quasi-normal at p, then, 1 <_ i <_ t, are also quasi-normal at p.
Proof. Letf e (. We define a germ fof a continuous function

at p by

(x)- (x)’ x e
try(p), xeY, i:>2.

Since (V)-[_)(Y)-{p} and V is quasi-normal at p, we have

fe (. Therefore, f e (, which completes the proof.
Let V be an analytic subvariety of an open subset D o C which

is not quasi-normal at p e V. We can choose a polydisk / and co-
ordinates z, ..., z so that

v {z= z-0}- {p}.
Let V be any analytic subvariety of {z--... =z-0} through the point
p and let V-- V tJ V. Then, V is reducible and not quasi-normal at p.
An example is given by a subvariety of C defined by the equation"
z(z-wg=O.
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