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41. On Some Non.linear Equations

By Masaharu ARAI and Akira NAKAOKA

(Comm. by Kinjir6 KUNUGI, M. 1. n., March 13, 1972)

1. Problems and results. In this note we study the following

(1.1)

and

s,=l 3xs x -2u=f in 9

ul0-0 (n_<_3),

au E -i a(x, u) t>o, x e 9
t s,=l x
u(x, t)lo=0, u(x, 0)=u0(x) (n=<3),

where/2 is a bounded smooth domain in Rn.
We assume here

(A.1) a(x, y)-a(x, y) are real-valued and of class (R).
(A.2) There exists a positive constant c such that

as(x,y)c
jk=I

or any -- (, ..., ) e R and any (x, y) e 9 R.
As or elliptic equations there are many works on more general

ones than (1.1), and most o them are concerned with ’weak’ solutions
such as belonging to H(9), or treated in a space o HSlder class. One
of our aims here is to show the existence of ’strong’ solutions o (1.1),
which belong to H(9), though the dimension of the underlying domain
is restricted. Another is to show, i the initial data is small enough,
then there exists a unique global solution of (1.2) belonging to H(9)
for each t, and it will give an example which makes it possible to
apply the abstract theory on non-linear semi-groups to some quasi-
linear parabolic equations.

Our results are
Theorem 1. For any positive number a, there exists a real num-

ber 0-0(a) such that the equation (1.1) has a solution u(x) e
H(9) for any 2o(a) and f(x) e L(9) with f g a.
Theorem 2. In Theorem 1, we can take 20(a)--0 for suciently

small a.
Theorem . If ]Uo] is suciently small, then the equation (1.2)

has a unique solution u(t, .) e H(9) H(9) (tO) such that"
( u(t, .) is Lipschitz continuous function in L(9), so that there

exists du/dt e L(9) for almost all tO, which satisfies (1.2).

equations"
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(ii) The right derivative D:u(t, .) e L(tO) exists for all t>= 0 and
it satisfies (1.2).

2. Preliminaries. In this section we shall prepare some lemmas
and propositions which will be needed to prove Theorems 1 and 2.

We start with
Lemma 2.1. Let u(x) be in H(t) and v(x) be in H(9) (sn/2).

Then it follows in the sense of L(9) that

( u ) u(2.1) Xj a(x, v) x a,(x, v)

+ a(x, v) v u + a(x, v)
3x x 3xx

where aj, denotes the partial derivatives of a(x, y) by xj and a by y.
In developing our arguments, the ollowing well-known lemma due

to Sobolev is much important.
Lemma 2.2 (Sobolev). Let u(x) be in Hs(9). If O<s<n/2, then

u(x) is in L(t) with l/p-1and if s>n/2, then u(x) is in
with Oas--n/2, a<=1. And in both cases, the imbedding is bounded.

The ollowing a priori estimate also plays an important rSle.
Lemma 2.:. Let u(x) be in H(9) H(9) and v(x) be in H(tO) with

7/4s=<2, and put

(2.2) , 0 a(x,v) Ou --f(x),
,= x 3x

which is in L(9) by Lemma 2.1. Then we have
(2.3) ]lu]]_<_const.

The proo o this lemma can be carried out by localization by parti-
tion o unity as well as the case o linear equations, and the basic
techniques are almost similar to the linear cases except that the
diameter of localization depends upon v

The ollowing two propositions are prepared or applying the
Schauder’s fixed point theorem.

Proposition 2.1. Let u(x) e H2([2) H(9) and v(x) e H(9) satisfy

(2.4) ,-- 3x a
Then we have
(2.5) u[[_<_ const. [((1+ IIv I1)+}(+ .)- + 1]
(2.6) u =< (2 + 7)- f
for some constant 0.

Proposition 2.2. Let v(x) e H([2) (7/4s__<2) and u(x)eH(9)
H(2) satisfy (2.4) for ] 1, 2, and v I1 <= M. Then for any O, there
exists =3(e, M)0, such that Itv--vl implies Ilu--u

3. Sketch of Proof of Theorems I and 2. The proo o Theorems
1 and 2 is nothing but a direct application of the Schauder’s fixed point



170 M. AP,A: and A. NAKAOKA [Vol. 48,

theorem. For this we describe a few lemmas.
Lemma 3.1. For any f(x) e L2(2) and v e H(9) (7/4<s_<_2), the

equation (2.4) has a unique solution u(x) e H2(/2) H(9).
This is an immediate consequence of Proposition 2.2.
Thus we have a mapping T--T," v-u from H2(tg) H(9) into it-

self for each 2 0 and f e L2(9). Since the imbedding H2(9) H(9) into
H(9) H(9) (s <2) is compact, by Proposition 2.2 again, we have

Lemma 3.2. The mapping T is compact.
It is easy to show by Proposition 2.1 that

Lemma 3.3. Let a>O. Then there exists 20-20(a) and L=L(2, a)

for 22o(a) such that T,z maps
D,,{u e H(9) nH(9) llulla(+ r)-:, IlullL(, a)}

into itself if f.a. o(a)- 0 for suciently small a.
By virtue of Lemma 3.2 and Lemma 3.3, we can apply the

Schauder’s fixed point theorem, which yields Theorems 1 and 2.

4. Proof of Theorem . The arguments to prove Theorem 2
shows that

Lemma 4.1. Let aO be suciently small. Then for any f e

{f e Lz(9) f <a}, the equation

A() 0 (,) O

has a solution u(x) in
D{u e H(9) H(9) ]u]ay-, ]]u]]L(O, a)},

where L(O, a) tends monotonously to 0 as a tends to O.
As for the monotonicity of the operator A, we have

Lemma 4.2. For any u and v in D, it holds that
(4.1) (A(u) A(v), u v) G fl u-- v ,
with some positive constant if aO is suciently small.

Now let a be so small as Lemmas 4.1 and 4.2 hold. Let d be. the
restriction of A to D and A a maximal extension of satisfying (4.1),
which exists by the Zorn’s lemma if we allow multivalued operators.

Lemma 4.3. If A(u)B#O, then ueD and A(u) is single-

valued, so that A(u)=A(u).
According to the theory of the abstract non-linear contraction

semigroups, the evolution equation
du/ dt e A(u)

(4.2) u(0) =u0 e D(A)
in Hilbert space L(9) admits a unique solution u(t)e D(A) satisfying

(i) and (ii) in Theorem 3. Moreover it satisfies
(4.3) D?u(t) D?u(O) .

Now take Uo(X) such as Uo(X) e D and l[A(uo)II a, then in virtue of
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Lemma 4.3, we have D:u(O)=A(uo)=A(uo) and I]D2u(t)lla by (4.3).
Thus again in virtue o Lemma 4.3, we can see D2u(t)=i(u)-(u),
which yields our result.

5o Supplementaries. Here we make mention of some generali-
zation of our results, which can be carried out without any essential
change of arguments stated above. Let q(x,y,z, ...,z) be a real
valued function satisfying
(5.1) q(x, y,
(5.2) q(x, Y, z)-- q(x,
where g and h are locally bounded unctions and 04__<2.

Consider the equations

{ (aj(x, u) u ) + q(x, u, grad u)--2u=f(5.3)

and

(5.4) - ,= oxj \ x- + q(x, u, grad u)

u(t, x)l=0, u(O, x)=uo(X).
Corresponding to Theorem m(m= 1, 2, 3), we have
Theorem 1’. For any aO, there exists a real number 20=0

(a, k, k) such that the equation (5.3) has a solution u(x) e H(9) H(9)
for any o and for f e L(9) and e H3](9) with f + ]3/2 a.

Theorem 2’. In Theorem 1’, we can choose 0=0, if a, k, and k2
are all suciently small.

Theorem ]’. If [[u0][2 is suciently small and if k and k2 are also
suciently small, then (5.4) has a unique solution.

The more delailed exposition will be published elsewhere.
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