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1. Introduction and the theorem. The purpose of this note is to
prove a pointwise ergodic theorem for a positive bounded linear oper-
ator which generalizes those induced by non-singular measurable
transformations and Markov processes with an invariant measure.
Throughout this note, let (X, f, m) be a finite measure space. We
denote the norm and the operator norm in L(X) by I1 (l<p< c).
Let T be a positive bounded linear operator defined on L(X). (The
positivity means that Tf>/O, if f>0.) Put S=-=0 T, where T
=I (identity). In the sequel we assume that the operator T satisfies
the following conditions.
(A) There exists a constant K>0 such that

II(1/n)SII<K and II(1/n)Snll<g(n=l,2,...),
lim II(Tn/n)fll--O for any f e ix(X) and lim

(B)
for any f e L(X),

(C) If f>/O, feL(X) and liminfll(S/n)fll---0, then f-0.
We shall prove the following
Theorem. Let T be a positive bounded linear operator on LI(X).

If the operator T satisfies three conditions (A), (B) and (C), then a
pointwise ergodic theorem holds for T, that is, the limit

lim 1__ (Tf)(x)
n =0

exists almost everywhere for any f e LI(X) and it is in L(X).
Remark. The operator in the theorem includes those induced by

measure preserving transformations (the Birkhoff’s pointwise ergodic
theorem). Consider an operator induced by a non-singular measurable
transformation. Then we have a pointwise ergodic theorem for the
operator only if the operator satisfies the above condition (C). For
the operator induced by a Markov process, there exists a finite invariant
measure / with/m if and only if the operator satisfies the above
condition (C) [3]. The operator in the theorem includes a positive
invertible operator T with sup_<< Tlx and sup_<n<

2. The proof of the theorern.
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We have the mean ergodic theorem for T.
Lemma 1 The limit

lim 1 (Tf)(x)

exists strongly for any f e L(X) and almost everywhere for any f in
the set A which is dense in L(X), where A-{h" h--f+ Tg--g, Tf f g
is essentially bounded, f, g e L(X)}.

Proof. Since a sequence ((S/n)f)(n-1, 2,...) is weakly sequen-
tially compact or any f e L(X) by (A), the first part of the lemma is
obvious from Yosida-Kakutani-Riesz theorem [2,4,5]. The second
part of the lemma follows rom (A), (B) and the prco oi the Yosida-
Kakutani-Riesz theorem.

Lemma 2. lim sup ((S/n)f)(x) c a.e. for any f e L(X).
Proof. We can assume f>/0. PutE--{x" lim sup_ ((S/n)f)(x)

=c} and E(a)--{x’limsup_(S/n)(f(x)-a)>O}, where a is an
arbitrary positive number. We use the Chacon-Ornstein lemma.

Lemma (Chacon-Ornstein) [1]. If sophs>l(Snf)(x)>0 on a set E,
then there exist sequences {d} and {f} of non-negative functions such
that

d-f- on E
=0

(1)

and

(2) Tf/- , T-d+f(O<]).
k=O

Remark. Though the lemma was proved under an assumption
with TII< 1, their proof of (1) and (2) is obtained without appealing
this assumption.

Since EE(a)=(x: suplSn(f(x)--a)>O} by (A), we can apply
the lemma or E and f--a and get sequences {d,} and {f,} of non-
negative functions such that

(3) , d,-(f-a)- on E
k=0

and

( 4 ) TJ(f--a)/= Y], TJ-d, +f,.
k=O

Since S/n is a positive operator and f,>0, we have by (4)

SnT(f_a)+dm> Sn
n --(=oT-d,) din.

By Lemma 1 and (B) we have s-lim (Sn/n)(Tg-g)=O for any
g e L(X) and therefore

By (A),
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n --0

Since a sequence (s-lim (S/n)__0d,)(]=0,1,2, ...) of non-
negative unctions is increasing, by the Fatou lemma we have

(5) K f(f --a) / dm>/ s-lim S--n-- d,dm.
n

Let e be an arbitrary positive number. If a is large enough, then it
follows rom (3) that there exists a measurable set F(FE) such that
m(E--F) and =o d,Z, where Z is the characteristic function
of F. If a tends to infinity we have by (5) and the positivity of

s-lim (S /n),

O-lim KI(f-a)+ dm Is-lim S zdm.

By (C) we have re(F)--O. Since e is arbitrary we have m(E)-O.
The proof of the theorem (Cf. K. Yosida [4, 5]). The proof is

obtained by Lemma 1, Lemma 2 and the Banach convergence lemma.
Lemma [2, 4, 5]. Let (Tn) (n--l, 2,...) be a sequence of bounded

linear operators from a Banach space L into the Frgchet space (S).
If lim sup ](Tf)(x)] for any f e L, then the (not necessarily

linear) operator T defined by
(Tf)(x)--lim sup (Tf)(x)--lim inf (Tf)(x)

is continuous as an operator defined on L into (S). (The quasi-norm
of (S) is defined by

f(x) din(x)llfll- +lf(x)]
for any measurable function f e (S).
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