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The purpose of the present paper is to give some results concern-
ing (complex) characters and unipotent elements of finite Chevelley
groups. Main results are proved by two simple lemmas stated in
section 1. Throughout the paper G denotes a connected reductive
linear algebraic group defined over a finite field k of q elements. For
simplicity we also assume that G has a maximal torus T which splits
over k. If L is an algebraic subgroup of G defined over k, L(k) denotes
the finite group of its k-rational elements. If S is a finite set, IS] denotes
the number of its elements. For a finite group H and class functions

and . on H, the inner product (, )z is defined by

If K is a subgroup of H and 0 is a class unction on K, i[0 K--,H] (or i[0])
denotes the class function on H induced by .

1. Let W be the Weyl group o G relative to T and B a fixed Borel
k-subgroup of G containing T. B determines a set / o positive roots
and a set A of simple roots in the system q o roots of G relative to T.
For each subset 8 of A, let P be the parabolic k-subgroup correspond-
ing to c and G, U its Levi k-subgroup and unipotent radical (see 3 of
the paper of A. Borel and J. Tits in Publ. de Math. I. H. E. S. n27
(1965)). G is connected reduetive and the root system qg of G relative
to T is spanned by . We denote by W the Weyl group of G relative
to T.

Lemma 1 (L. Solomon, C. W. Curtis). (a) Let 1 be the 1-charac-
ter of W and the alternating character of W. Then

s (-- 1)tl i[l WW].
(b) Let P(k) be the set of unipotent elements of P(k) and O be the

class function on P(k) defined by

O(x)- {1 if x P(k),
0 otherwise.

If we put
(1.1)
then

0 , (-- 1) i[Oe P(H)G(H)],

O(x) q if x-- 1,
0 otherwise,
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where
These are proved in [2] and [5].
In the next lemma, we must take or G the adjoint group extended

by the diagonal automorphisms (G’ in [8, p. 263]). Let U be the maxi-
mal unipotent subgroup of G contained in B so that B--TU. For a e
X--{x(t)} denotes the one-parameter unipotent subgroup defined by a.
Let (z/) be the ollowing linear character o U(k)"

if a e q+ \,
where a is a fixed nontrivial character of k.

Lemma 2. Let G be as explained above. Define a function on
G(k) by
(1.2) -z (-- 1) i[ U(k)-G(k)].
Then

’ if x is a regular unipotent element in G(k),(x)-
0 otherwise.

Proof. It is sufficient to prove this for x e U(k). Then x can be
expressed uniquely as x-]-[ x(t) (a e +) with the product taken in
any fixed order. Hence

(1.3)
(- 1)(x) (-1)+ (I-[ x(t)), (--1) 1’ I-[ e (t)- 1-Ie (1-c(t)).

Since x-I] x(t) is regular unipotent if and only if t:/:0 for all a
([1 p. 220]), we see by (1.3) that +(x)--0 if x is not regular unipotent.
Hence (x)-i[+](x)-O also. Now assume that x is not regular uni-
potent. In this case g-xg e U(k) for g e G(k) if and only if g e B(k)
=T(k)U(k) (see [1; p. 220]). If g-tu (re T(k),ue U(k)), +(g-xg)

I-[e (a(t)t). Hence
i[+ U(k)-G(k)](x) e() +(g-xg) /I U(k)

=,,er() ]-[ e (a(t)t)-(--1). l{t e T(k) a(t)-- I for a

by the definition of G and the fact" e a(t)---1. Thus we have
(x)- I{t e T(k) la(t)-- 1 for a e ,} I,

which equals to qt (see [8; p. 263]) as required.
2. As a first application of Lemma 1 we give a simple proof of

the following theorem. The original proof can be found in [7; 14,
15].

Theorem 1 (R. Steinberg). (a) The number of maximal tori of
G defined over k is q. (b) The number of unipotent elements of G
defined over k, i.e. of G(k) is also q.

Proof. Our method is similar to the one used in [5] to prove a
multiplicative ormula or the orders of the finite Chevelley groups.
Consider W as a finite reflection group which acts on R (: dual o
T). Then by [6; (5)] we have
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1 det w 1(2.1)
IWI .ew det (w--t) (1--t/)...(1--t"/)

and
1 t1 wW(2.2)

IWI det (w--t) (1--t+) .(1--t"+)
where m,..., mn are the exponents for W. (Recall that m-m+...
+mn ([8 p. 136]).) Let m(3), ..., m(3) be the exponents for W. Then
by (2.2) we have

1 1 t"()(2.3) W----’ det (w--t) (1-t()+9...(1--t()+9
where m()--m(a)+... +mn(). Consider the ollowing sum

(2.4) =(_1) 1 ,_ wWI we det (w-- t)
It is easy to see that this equals to

1 1w { (-- 1)’’i[1 WW](w)},
wI det (w-- t)

where the first sum is over a set o representatives o the conjugacy
classes of W. Hence by Lemma I (a) and the act that det w-e(w)
(w e W), (2.4) equals to

1 det wwWWI det (w-- t)
This combined with (2.1) and (2.3) leads to

tm() 1(2.5) z (--1)
(1_t()+9... (1_ t()+) (l_t,+9... (1--t+9

Let G be the universal Chevelley group in the sense of [8]. There is
no loss o generality in assuming this. Then by (2.5) and the multi-
plicative ormula or the orders of the finite Chevelley groups ([5],
[8; 9]),

(2.6) (--1)= --(-- 1)
G(k)] ]G(k)l

where G(k) is the group defined in 1. Let G(k) be the set of all uni-
potents o G(k). Consider the sum"

u,() 0(u).
By Lemma 1 (b) and the Froberius reciprocity theorem we have

(2.7) (_1) [P(k)= q--(--1) [G(k).
IP(k)l IG(k)]

Using the semidirect decomposition P(k)-G(k)U(k) we see that P(k)
=G(k)U(k). Hence (2.7) equals to

(2.S) Z(_), Gi(k) q-(-)’’ G(k)].
G,(k) IG(k)l

We can now prove Theorem 1 (b) by the induction on [A]. If {A]--0,
this is trivial. For A[G(k) l--q() by the induction hypothesis.
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Thus by (2.6) and (2.8) we get the required result IG:(k)l-q. As for
the part (a) of Theorem 1, (2.2) is essential for its proof. See the Stein-
berg’s paper [7; 14] for the details.

3. In this section, we announce a theorem which is a generali-
zation of the Green’s map used in the character theory of GL(k) (see
[3] and [1; Part D]). This can be proved by a technique similar to the
one used in the previous section. The detailed proof is given in the
author’s forthcoming paper [4]. Let P be a parabolic k-subgroup of
G and B(P(k)) the set of all class functions on P(k) which satisfy the
condition
(3.1) (x)--(x) (x e P(k)),
where x is the semisimple part of x. Let T, T., ..., T be a set of
representatives of the G(/)-conjugacy classes of maximal tori of G
defined over k. For e B(k), define the function q55 on T(k) by
(3.2) Crew(t) QDT CQ(t) (t e T(k)),
where the sum is over the set of all parabolic k-subgroups Q containing

T which are G(k)-conjugate to P and
CQ(t)--(gtg-)

if Q-g-Pg (g e G(k)). Let W be the finite group Ne()(T)/T(k).
Then Cr is invariant under W.

Theorem 2. Let P, P’ be parabolic k-subgroups of G(lc) and ,
elements of B(P(k)) and B(P(k)) espectively. Then

P

where 5:’s are defined by (3.2).
In the special case G--GL, one can reformulate this as ollows.
Theorem 3. Let G-GL. There exists a linear map qS-q5 from

the complex vector space of class functions on G(tc) onto the one of W-
invariant functions on T(k) which satisfies

A

This formula was originally proved by J. A. Green [3] using a
combinatorial method.

4. Proposition 1. Let X be a character of G(tc) which is a cusp

form (see [1; Part C]). Then
(4.1) ee:(> Z(u)-- (-- 1)lslZ(1)q (m--I+ 1).

Proposition 2. Let G be as in Lemma 2 and Z an irreducible
character of G(k) which is a cusp form. Then
(4.2) ,,e() Z(u’)/iG(k)l-(--1) or O,
where Gr(tC)-{regular unipotent elements in G(k)}.

Remark. It is conjectured by I. G. Macdonald (see [1; Part C])
and E. Bannai and H. Enomoto (see p. 148 of J. Alg. 20 (1972)) that
analogues of (4.1) and (4.2) are also valid or a general irreducible
character Z.
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Proof of Proposition 1. Let 0 be the unction on G(k) defined by
(1.1). By the Frobenius reciprocity theorem we have

(z, 0)e()-E (-1)’(z P(k),
where Z] P(k) is the restriction o z to P(k). Using the Levi decom-
position P(k)-G(k)U(k) we have

(Z P(k), 0)()-(){u( z(mu)} / P(k)I.
By the definition of cusp orms this equals to 0 unless --A. For --A
this is

E z(u)/I G(k)I.
On the other hand, Lemma 1 (b) leads to

(z, o)-z()q/I ().
Hence

(-) z(u)=z()q.
This proves the proposition.

To prove Proposition 2, we need the ollowing
Lemma 3. Le$ Z be an irreducible character of G() which is a

cusp form. Then
(Z, i[%])-0 for all

or (Z, i[])-1 and (Z, i[%])-0 for all.
Proof. This is a consequence o the ollowing two acts"
(a) (S. I. Gelfand" Math. USSR. 8b., 12 (1970), P. 21) Let Z be

a cusp orm on G() and (Z, i[])0 or some 3c. Then (Z,)
0 and (Z, )--0 or all 3. (Actually, Geland proved this only
or G--GL. But his proo works also for the general case.)

(b) (I. M. Geland and M. I. Graev, R. Steinberg [8; 14])
(Z, i[]) 0, (Z, i[])-1.

Proof of Proposition 2. Let be the unction on G(k) defined by
(1.2). By Lemma 2 we have

(z,)-u, z(u,)q/ ().
On the other hand, by Lemma 3 we have

(Z, )--(- 1) or 0.
Hence , z(u’)q/IG()[-(-1) or 0.

This combined with [1 Part E, III, 1.20] gives the required result.
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