152. A Treatment of Some Function Spaces used for the Study of Hypoellipticity. I

By Hideo YAMAGATA

Department of Mathematics, College of Engineering, University of Osaka Prefecture, Mozu, Sakai City, Osaka

(Comm. by Kinjirô KUNUGI, M. J. A., Nov. 13, 1972)

Introduction. The space $\mathfrak{F}(\Omega) \equiv \bigcap_{i \in I} B_{p_i,k_i}^{\text{loc}}(\Omega)$ according to L. Hörmander [1] p. 45, p. 77 rather shows a common structure of the spaces belonging to a family. Then we will show here the above structure (with the extended form) described in the form of ranked space ([2] p. 4) in Theorem I-2 etc., § 1, and show the concrete meaning of transcendental ranks appearing in our ranked space in Example I-1, Next, we will show the concrete spaces as the special form of §1. "the space in § 1" in Theorems I-3, I-4, § 2. Our extension is based on the unified description of the theorems on hypoellipticity which is related to C^{∞} and related to a set of analytic functions defined in [3] p. 820 (cf. [1] p. 102, p. 178). The contents of this paper is a part of our further aim "the constructive systematization (i.e. ranked systematization by using transcendental ranks) for the theory of partial differential equation", because ranked space has a sort of totally ordered structure defined by the inclusion of pre-neighbourhoods with larger ranks.

§1. Extension of $\mathfrak{F}(\Omega)$ as a ranked space. Hereafter, we use the following notations; $K \equiv \{k(\xi); 0 \leq k(\xi+\eta) \leq (1+C|\xi|)^N k(\eta)$, where $C, N > 0, \xi, \eta \in \mathbb{R}^n\}$, $B_{p,k} \equiv \{u; u \in (\mathfrak{D}'), \hat{u} \equiv \mathfrak{F}u \to a \text{ function}, ||u||_{p,k} \equiv ((2\pi)^{-n} \int |k(\xi)\hat{u}(\xi)|^p d\xi \Big)^{1/p} < +\infty \}$, where $k \in K, 1 \leq p \leq \infty$ and $||u||_{\infty,k} \equiv \text{ess sup } |k(\xi)$ $\hat{u}(\xi)|$. $B_{p,k}^* \equiv \{u; u \in (\mathfrak{D}'), \mathfrak{F}^{-1}(k(\xi)\hat{u}(\xi)) \to a \text{ function}, ||u||_{p,k}^* \equiv ((2\pi)^{-n} \int |\mathfrak{F}^{-1}(k(\xi)\hat{u}(\xi))|^{p'} d\xi \Big)^{1/p'} < +\infty \}$, where p' = p/(p-1), p' = 1 for $p = \infty$, and $p' = \infty$ for p = 1. Ω ; open connected set in \mathbb{R}^n . $L(\Omega) \subseteq \{f; \text{ Carrier } f \subset \Omega\}$. P; diff. op. etc., $B_{p,k}^{\text{loc}}(\Omega; L, P) \equiv \{u; Pu \in (\mathfrak{D}'_{\alpha}), \varphi Pu \in B_{p,k} \text{ for } \forall \varphi \in L(\Omega)\}$, $B_{p,k}^{\text{loc}}(\Omega; \mathcal{C}_0^*, 1)$. If $B_{p,k}^{\text{loc}}(\Omega; L, P) = B_{p,k}^{\text{loc}}(\Omega; \tilde{L}, P)$ or $B_{p,k}^{\text{loc}}(\Omega; L, P) = B_{p,k}^{\text{loc}}(\Omega; \tilde{L}, P)$ we say that these spaces (in the left hand side) are countably local, where $\tilde{L}(\Omega) = \text{countable subset of } L(\Omega)$. There exists $\tilde{C}_0^{\infty}(\Omega)$ for $C_0^{\infty}(\Omega)$ (cf. [1] p. 44).

Definition I-1. Let I be a totally ordered set of limit or isolated

ordinal numbers smaller than an inaccessible number, and let $\Gamma(n)$ be a monotone increasing function from $\{1, 2, \dots\}$ into I (not necessarily strict). Let $B_{p_i,k_i}^{\text{loc}}(\Omega; L_i, P_i)$ and $B_{p_i,k_i}^{\text{loc}}(\Omega; L_i, P_i)$ be countably local by $\tilde{L}_i(\Omega) = \{\varphi_{\nu,i}; \nu = 1, 2, \dots\} \subseteq L_i(\Omega)$ for any $i \in I$. (This condition "countably local" can be omitted.) Let Q_i denote $[p_i, k_i, \tilde{L}_i(\Omega), P_i]$ $(i \in I)$, and let $Q \equiv \{Q_i; i \in I\}$.

(i) Let $\hat{\varphi}_{Q} \equiv \bigcap_{i \in I} B_{p_{i},k_{i}}^{\text{loc}}(\Omega; L_{i}, P_{i})$ (as a set), let $\Phi_{Q}^{(l)} = \bigcap_{i \in I, i \leq l} B_{Q}^{\text{loc}}(\Omega; L_{i}, P_{i})$, where $l \in I$, let $B_{Q}^{(l)}$ be the set in $\Phi_{Q}^{(l+1)}$ satisfying $\overline{B}_{Q}^{(l)}$ $= \Phi_{Q}^{(l)}$ by the topology in $\Phi_{Q}^{(l)}$, and let ε be a positive rational number's double sequence $\{\varepsilon_{\nu,i}\}$. Let $\hat{\mathfrak{S}}_{\lfloor Q, \Gamma \rfloor}^{(l)} \equiv [\hat{U}_{l}(u_{0}; Q, \Gamma, \varepsilon) \equiv \{u; P_{i}u \in \hat{\Phi}_{Q}, \|\varphi_{\nu,i}P_{i}(u-u_{0})\|_{p_{i},k_{i}} \leqslant \varepsilon_{\nu,i}$ for any $i \leq l, \Gamma(\nu) \leq l\}$; $u_{0}(\in B_{Q}^{(l)}), \varepsilon]$. $\hat{F}_{R}[Q, \Gamma]$ denotes the pair $(\hat{\Phi}_{Q}, \{\hat{\mathfrak{B}}_{\lfloor Q, \Gamma \rfloor}^{(l)}; l \in I\})$. Since $\hat{U}_{l}(u_{0}; Q, \Gamma, \varepsilon)$ is a preneighbourhood, $u_{0} \in \hat{U}_{l}(u; Q, \Gamma, \varepsilon)$ may happen. By the same way we can define $\hat{F}_{R[Q,\Gamma]}^{*} \equiv (\hat{\Phi}_{Q}^{*}, \{\hat{\mathfrak{B}}_{\lfloor Q,\Gamma \rfloor}^{(l)}; l \in I\}) \equiv (\hat{\Phi}_{Q}^{*}, \{[\hat{U}_{l}^{*}(u_{0}; Q, \Gamma, \varepsilon); u_{0}, \varepsilon]; l \in I\}$ by the norms $\| \cdots \|_{P_{\nu,k_{i}}}^{*}$. $\hat{F}_{R}[Q] \equiv \{(\hat{\Phi}_{Q}, \{\hat{\mathfrak{B}}_{\lfloor Q,\Gamma \rfloor}^{(l)}; l \in I_{\Gamma}\}); \Gamma\}$ etc. are also defined by using $I_{\Gamma} \equiv \bigcup_{n} \{j; 1 \leq j \leq \Gamma(n)\}$.

(ii) Let $\check{\Phi}_{Q} \equiv \bigcup_{i \in I} B_{p_{i},k_{i}}^{\text{loc}}(\Omega; L_{i}, P_{i})$ (as a set). Let $\check{\mathfrak{B}}_{\lfloor Q, \Gamma \rfloor}^{(l)} \equiv [\check{U}_{l}(u_{0}; Q, \Gamma, \varepsilon) \equiv \{u; P_{i}u \in \Phi_{Q}^{(l)}, \|\varphi_{\nu,i}P_{i}(u-u_{0})\|_{p_{i},k_{i}} \leqslant \varepsilon_{\nu,i} \text{ for any } i \leqslant l, \ \Gamma(\nu) \leqslant l\};$ $u_{0}(\in B_{Q}^{(l)}), \varepsilon].$ $\check{F}_{R}[Q, \Gamma]$ denotes the pair $(\check{\Phi}_{Q}, \{\check{\mathfrak{B}}_{\lfloor Q, \Gamma \rfloor}^{(l)}; l \in I\}).$

By the same way we can define $\check{F}_{R}^{*}[Q, \Gamma] \equiv (\varPhi_{Q}^{*}, \{\check{\mathfrak{D}}_{[Q,\Gamma]}^{(l)}; l \in I\}) \equiv (\check{\varPhi}_{R}^{*}, \{[\check{U}_{l}^{*}(u_{0}; Q, \Gamma, \varepsilon); u_{0}, \varepsilon]; l \in I\})$ by the norms $\| \cdots \|_{p_{l}, k_{l}}^{*}$.

The definition of $\{B_Q^{(l)}\}\$ is possible under the norms $\|\cdots\|_{p,k}$ and $\|\cdots\|_{p,k}^*$. The use of $B_Q^{(l)}$ and rational $\varepsilon_{\nu,i}$ sometimes makes the construction of ranked space by countable pre-neighbourhoods possible.

Definition I-2. (i) Let $\hat{\psi}_{Q}^{w} \equiv \{\bigcap_{i \in I, p_{i} \geq 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\}$ and let $\hat{\psi}_{Q}^{s} \equiv \{\bigcap_{i \in I, p_{i} \geq 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\} \cap \{\bigcap_{i \in I, 1 \leq p_{i} < 2} B_{p_{i},k_{i}}^{\text{loc}}(\varOmega; L_{i}, P_{i})\}$ (for $1 \leq p_{i} < 2(p_{i} \geq 2)$) and by using the norms $\|\cdots\|_{p_{i},k_{i}}$ for $1 \leq p_{i} < 2(p_{i} \geq 2)$.

(ii) $\check{F}_{Q}^{w}[Q,\Gamma] \equiv (\check{\Phi}_{Q}^{w}, \{\check{\mathfrak{Y}}_{[Q],\Gamma]}^{(l)}; l \in I\})$ and $\check{F}_{R}^{s}[Q,\Gamma] \equiv (\check{\Phi}_{Q}^{s}, \{\check{\mathfrak{Y}}_{[Q],\Gamma]}^{(l)}; l \in I\})$ can be defined by the similar method as (i) using $\bigcup_{i \in I, p_{i} \geq 2}$ etc. instead of $\bigcap_{i \in I, p_{i} \geq 2}$ etc. This $\check{F}_{R}^{w}[Q,\Gamma]$ is the widest space.

Theorem I-1. Each one of $\hat{F}_R[Q, \Gamma]$, $\check{F}_R[Q, \Gamma]$, $\hat{F}_R^*[Q, \Gamma]$, $\check{F}_R^*[Q, \Gamma]$, $\check{F}_R^*[Q, \Gamma]$, $\check{F}_R^*[Q, \Gamma]$, $\check{F}_R^w[Q, \Gamma]$ and $\check{F}_R^w[Q, \Gamma]$ is a ranked space.

Proof. Since for any $v_0 \in B_Q^{(l)}$ and for any positive rational number's sequence $\varepsilon \equiv \{\varepsilon_{\nu,i}\}$ there exist $w_0 \in B_Q^{(l+1)}$ and $\varepsilon' \equiv \{\varepsilon'_{\nu,i}\}$ (satisfying $\varepsilon'_{\nu,i} \in (0, \varepsilon_{\nu,i})$) such that $\hat{U}_l(v_0; Q, \Gamma, \varepsilon) \supseteq \hat{U}_{l+1}(w_0; Q, \Gamma, \varepsilon')$ holds from the property of $B_Q^{(l)}$, then $\hat{F}_R[Q, \Gamma]$ becomes a ranked space. By the same way other spaces also become ranked spaces.

Let *I* be a totally ordered set consisting of limit or isolated ordinal numbers smaller than an (inaccessible) number ω_{ν} , let $I' \subseteq I$, and let $I'' = \bigcup_{j=1}^{\infty} \{i; 1 \leq i \leq i_j, i_j \in I\} \subseteq I'$.

Let $\hat{F}_R[\Omega, \{p_i, k_i\}, \Gamma] \equiv \hat{F}_R[Q, \Gamma]$ by $Q = Q(c) \equiv \{Q_i(c)\} \equiv \{[p_i, k_i, \tilde{C}_0^{\infty}(\Omega), 1]\}$ and by $\varepsilon_{\nu,i} \equiv \varepsilon$ for \forall_{ν}, \forall_i etc. Let $\mathfrak{B}\{u_i\} = [\{u_i; i \in I', i \ge l\}; l \in I']$.

Theorem I-2. (i) If $\{u_i; i \in I'\}$ tends to u in $\hat{F}_R[\Omega, \{p_i, k_i\}, \Gamma]$ uniquely, $\mathfrak{B}\{u_i\}$ becomes a filter base and tends to u in $\mathfrak{F}(\Omega) \equiv \bigcap_{i \in I} B_{p_i, k_i}^{\text{loc}}(\Omega)$.

(ii) Suppose that $\mathfrak{B}\{u_i\}$ tends to u in $\mathfrak{F}(\Omega)$, and that for any $l \in I''$ and for any $\varepsilon > 0$ there exists a pair $\{\gamma(l), \overline{l}(l, \varepsilon)\}$ of mappings satisfying the following conditions $(1^\circ), (2^\circ)$. Here γ is an one-to-one monotone increasing mapping from I'' to a subset of I, and $\overline{l}(l, \varepsilon)$ is a mapping from $I'' \times \{\varepsilon; \varepsilon > 0\}$ to I'. $(1^\circ) \sup \{ \|\varphi_{\nu}(u_i - u)\|_{p_{\mu}, k_{\mu}}; \Gamma(\nu), \mu \leq \gamma(l) \ (\mu \in I, \nu = 1, 2, \cdots), i \ge \overline{l}(l, \varepsilon) \} < \varepsilon$. $(2^\circ) \bigcup_{n \in I''} \{i; 0 < i \le \gamma(n)\} = I$. If (3°) $\{w; w \in \Phi_{Q(\varepsilon)}^{(l)}, \|\varphi_{\nu}(w-u)\|_{p_{\mu}, k_{\mu}} < \varepsilon \text{ for } \Gamma(\nu), \mu \le l \ (\mu \in I, \nu = 1, 2, \cdots) \} \cap B_{Q(\varepsilon)}^{(l)}$ $\neq \emptyset$ holds for any $l \in I$ and for any $\varepsilon > 0$, then $u_i(i \in I')$ tends to u uniquely in $\widehat{F}_R[\Omega, \{p_i, k_i\}, \Gamma]$.

Proof. (i) Let $I[\gamma_1]$ be a subset of I and γ_1 be a monotone increasing mapping from $I[\gamma_1]$ satisfying $\bigcup_{l \in I[\gamma_1]} \{i; 1 \leq i \leq \gamma_1(l)\} = I$. If $\{u_i; i \in I'\}$ tends to u in $\hat{F}_{R}[\Omega, \{p_{i}, k_{i}\}, \Gamma]$, there exists a Cauchy sequence $\{\hat{U}_{r_{1}(l)}(\tilde{u}_{l}; Q(c), \Gamma, I)\}$ $\{\varepsilon^{(l)}\}$; $l \in I[\gamma_1]\}$ (defined by some γ_1 and satisfying $\hat{U}_{\gamma_1(l)}(u; Q(c), \Gamma, \{\varepsilon^{(l)}\})$ $\supseteq \hat{U}_{r_1(l')}(\tilde{u}_{l'}; Q(c), \Gamma, \{\varepsilon^{(l')}\})$ for $l \leq l'$ such that the following (a)~(d) hold [2] p. 4. (a) $\hat{U}_{\tau_1(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}) \in \hat{\mathfrak{B}}_{[\varrho, \Gamma]}^{(r_1(l))}$. (b) For any $l \in I[\gamma_1]$ there exists $(l \leq \lambda = \lambda(l) \in I[\gamma_1]$ such that $\gamma_1(\lambda) < \gamma_1(\lambda + 1)$ hold. (c) There exists a monotone increasing function $\gamma_2(l)$ (in wide sense) from $I[\gamma_1]$ to I' such that $\hat{U}_{\gamma_1(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}) \ni u_i$ holds for any $i \ge \gamma_2(l)$ $(i \in I')$. (d) $\bigcap_{l \in I[n]} \hat{U}_{n(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}) \equiv \{u\}$. Then $\varepsilon^{(l)} > 0$ is monotone (in wide sense) decreasing as the function of l, and $\mathfrak{B}{\varepsilon^{(i)}} \equiv [{\varepsilon^{(i)}; i \in I[\gamma_1], i \ge l};$ $l \in I[\gamma_1]]$ tends to 0 in R^1 . Since $\hat{U}_{\gamma_1(l)}(u; Q(c), \Gamma, \{2\varepsilon^{(l)}\}) \equiv \{w; w \in \hat{\varPhi}_{Q(c)}, \Gamma, \{2\varepsilon^{(l)}\}\}$ $\|\varphi_{\nu}(w-u)\|_{p_{i},k_{i}} \leqslant 2\varepsilon^{(l)} \text{ for any } i \leqslant \gamma_{1}(l), \Gamma(\nu) \leqslant \gamma_{1}(l) \} \supseteq \hat{U}_{r_{1}(l)}(\tilde{u}_{l}; Q(c), \Gamma, \{\varepsilon^{(l)}\})$ $\ni u_i$ for $i \ge \gamma_2(l)$ $(i \in I')$ holds, then $\mathfrak{B}\{u_i\}$ tends to u in $\mathfrak{F}(\Omega)$. Namely the filter made from $\mathfrak{B}{u_i}$ contains all neighbourhoods of u by $\|\varphi_v \cdots \|_{p_u,k_u}$ in $\mathfrak{F}(\Omega)$ for any fixed (μ, ν) . Even if $\varepsilon^{(l)} = \varepsilon^{(l')}$ and $\tilde{u}_l = \tilde{u}_{l'}$ hold for $l < l'(l, l' \in I[\gamma_1]), \text{ and if } \gamma_1(l) < \gamma_1(l'), \hat{U}_{\gamma_1(l)}(\tilde{u}_l; Q(c), \Gamma, \{2\varepsilon^{(l)}\}) \supset (\neq) \hat{U}_{\gamma_1(l')}$ $(\tilde{u}_{l'}; Q(c), \Gamma, \{2\varepsilon^{(l')}\})$ holds. If the description of the ranked space by countable pre-neighbourhoods is possible, $I[\gamma_1]$ may become a countable set.

(ii) Let $\{l_{ij}; i \in I''\}$ be a sequence of limit or isolated ordinal numbers (satisfying $l_{ij} \leq l_{i'j}$ for i < i' in I'') such that $I' \ni l_{ij} \geq Max[\bar{l}(i, 1/j), i]$ holds.

Since there exists $\tilde{u}_{ij} \in \{w ; w \in \Phi_{Q(c)}^{(r(i))}, \|\varphi_{\nu}(w-u)\|_{p_{\mu},k_{\mu}} \leq 1/j \text{ for } \Gamma(\nu), \\ \mu \leq \gamma(i) \ (\mu \in I', \nu \text{ natural number})\} \cap B_{Q(c)}^{(r(i))}(i \in I'') \text{ from } (\mathbf{3}^{\circ}), \ \hat{U}_{\tau(i)}(\tilde{u}_{ij}; Q(c), \\ \Gamma, \{2/j\}) \supseteq \{w ; w \in \hat{\Phi}_{Q(c)}, \|\varphi_{\nu}(w-u)\|_{p_{i},k_{i}} \leq 1/j \text{ for any } i \leq \gamma(i), \ \Gamma(\nu) \leq \gamma(i)\} \\ \supseteq \{u_{i'}; i' \geq l_{ij}, i' \in I'\} \text{ holds from the condition } (\mathbf{1}^{\circ}) \text{ of Theorem I-2} \\ (\text{ii). Since } \ \hat{U}_{\tau(i)}(\tilde{u}_{i,4j}; Q(c), \Gamma, \{2/4^{j}\}) \supseteq \ \hat{U}_{\tau(\tilde{i})}(\tilde{u}_{i,4j+1}; Q(c), \Gamma, \{2/4^{j+1}\}) \ (i < \tilde{i}) \\ (j=1, 2, \cdots) \text{ holds, if } \ \hat{U}_{\tau(\ell)}(\tilde{u}_{i}; Q(c), \Gamma, \{c^{(1)}\}) \equiv \ \hat{U}_{\tau(\ell)}(\tilde{u}_{i,4j+1}; Q(c), \Gamma, \{2/4^{j+1}\}) \end{cases}$

for $i < l \leq \tilde{i}$ (the condition of I'' is derived from here), $\{\hat{U}_{r(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}); l \in I''\}$ is a Cauchy sequence in $\hat{F}_R[\Omega, \{p_i, k_i\}, \Gamma]$ such that $\bigcap_{l \in I''} \hat{U}_{r(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}) \equiv \{u\}$ and $\hat{U}_{r(l)}(\tilde{u}_l; Q(c), \Gamma, \{\varepsilon^{(l)}\}) \supseteq \{u_i; i > l_{i(4^j), 4^j}, i \in I'\}$ for $i(4^{j-1}) \leq l < i(4^j)$ hold, where $i(4^j) = i$ in $\tilde{u}_{i,4^j}$ and $i(4^{j+1}) = \tilde{i}$ in $\tilde{u}_{\tilde{i}, 4^{j+1}}$. Namely, $u_i(i \in I')$ tends to u uniquely in $\hat{F}_R[\Omega, \{p_i, k_i\}, \Gamma]$.

If I' is countable, (1°) (2°) and (3°) naturally hold. If we use $\{\varepsilon_{\nu,i}\}$ not satisfying $\varepsilon_{\nu,i} \equiv \varepsilon$, it seems that we may use an inaccessible number ω_{ν} .

The ranked description of the following concrete space gives an interpretation to the use of transcendental number.

Example I-1. Let us treat a compact set Ω^2 in R^2 as Ω . Let $\{k_i(\xi) ; i \in I\}$ be an ordered set made from $\{k_{(m,n,\delta)}(\xi) \equiv 1 + \exp\{(\log_e r) (m \sin^2(2\pi n\theta + \delta) + (1+1/m))\}; m, n \text{ are positive integer, } \delta \in [0, 2\pi)\}$ and $p_i \equiv p \ge 1$. Let $\Omega(1) = \{(r \cos \theta, r \sin \theta); r > 1, \theta \in [0, 2\pi)\}$, let $1_{\mathcal{G}(1)}(\xi)$ be the characteristic function of $\Omega(1)$ and let $\tilde{1}_{\mathcal{G}(1)}(x)$ be its inverse Fourier transform. If $\|\varphi_{\nu} \cdot \tilde{1}_{\mathcal{G}(1)}(x) * u\|_{p,1+\exp\{(\log_e r) \times (1+1/m)\}}$ (for $\varphi_{\nu} \in \tilde{C}_{0}^{\infty}$) is used as the topology $\tau_{(m,n,\delta)\nu}$, for the space $B_{p,k}^{\mathrm{loc}}(\Omega; L_i, P_i)$ by $\|\varphi_{\nu} \cdot \tilde{1}_{\mathcal{G}(1)}(x) * u\|_{p,k(m,n,\delta)(\xi)}$, and if $\bar{B}_{\tau}^{\mathrm{loc}}$ denotes the closure of $B_{p,k}^{\mathrm{loc}}$ by τ , $\bigcap_{(m,n,\delta)} \bigcap_{\nu=1}^{\infty} \bar{B}_{\tau(m,n,\delta),\nu}^{\mathrm{loc}}(\Omega; \tilde{C}_{0}^{\infty}, \tilde{1}_{\mathcal{G}(1)}(x) *)$ holds. $\bigcap_{(m,n,\delta)} B_{p,k(m,n,\delta)}^{\mathrm{loc}}(\Omega; \tilde{C}_{0}^{\infty}, \tilde{1}_{\mathcal{G}(1)}(x) *)$ can be interpreted as the family of such $\{\tau_{(m,n,\delta),\nu}, \bigcap_{m=1}^{\infty} \bigcap_{\nu=1}^{\infty} \bar{B}_{\tau(m,0,0),\nu}^{\mathrm{loc}}(\Omega; \tilde{C}_{0}^{\infty}, \tilde{1}_{\mathcal{G}(1)}(x) *)\}$. This interpretation means that the description by the transcendental factors is the set of the descriptions by the suitable countable factors.

§2. The space C^{∞} and the space of analytic functions.

Theorem I-3. If I has countable elements, if $p_i \ge 1$ and if $k_i(\xi) = (1+|\xi|)^i$, $\mathfrak{F}(\Omega) \equiv \check{F}_R[\Omega, \{p_i, k_i\}, 1] (\equiv C^{\infty}(\Omega) \text{ as a set) holds (cf. Theorem I-2).}$

Proof. We can prove $\mathfrak{F}(\Omega) \equiv \check{F}_{R}[\Omega, \{p_{i}, k_{i}\}, 1]$ by the similar argument to Theorem I-2. Let $p \ge 1$. If $k_{i}(\xi) = (1+|\xi|)^{i}$, $(1+|\xi|)^{j}/k_{i}(\xi) = (1+|\xi|)^{i-i} \in L_{p'}$ is valid for $j \le i-n-1$, and for any p' satisfying 1/p+1/p'=1. Then $B_{p_{i},k_{i}}^{\mathrm{loc}}(\Omega) \subset C^{j}(\Omega)$, $(j \le i-n-1, p_{i} \ge 1)$ follows from Hörder's inequality etc. (cf. [1] p. 40, p. 44). Because $\xi^{\alpha}\hat{u}(\xi) = (\xi^{\alpha}/(1+|\xi|)^{i})$ $((1+|\xi|)^{i}\hat{u}(\xi))$ is integrable for $|\alpha| \le j$. Namely $\bigcap_{i=1}^{\infty} B_{p_{i},k_{i}}^{\mathrm{loc}}(\Omega) \subseteq C^{\infty}(\Omega)$ holds. Since $C^{\infty}(\Omega) \subseteq B_{p_{i},k_{i}}^{\mathrm{loc}}(\Omega)$ follows from the Fourier invariance of (\mathfrak{S}) (cf. [1] p. 37, p. 44 etc.), $C^{\infty}(\Omega) \subseteq \bigcap_{i=1}^{\infty} B_{p_{i},k_{i}}^{\mathrm{loc}}(\Omega)$ holds. Because (\mathfrak{S}) $\subset L_{p,k} \equiv \{v; V \text{ measurable}, ||kv||_{p} < +\infty\}$ holds in the topological sense. Hence $\check{F}_{R}[\Omega, \{p_{i}, k_{i}\}, 1] \equiv \bigcap_{i=1}^{\infty} B_{p_{i},k_{i}}^{\mathrm{loc}}(\Omega)$ holds as a set.

$$\begin{split} E^{1}(\Omega) &\equiv \{\mathbf{1}_{\omega(x_{0},r)}(x) ; \omega(x_{0},r) \equiv \{x ; \|x-x_{0}\| < r\} \subset \Omega, r \in (0,1] \text{ rational, } x_{0} \\ \text{rational point in } \Omega\}, \text{ where } \mathbf{1}_{A}(x) \text{ is the characteristic function of } A. \\ \text{Let } Q &= Q(A, \omega(x_{0},r)) \equiv \{Q_{a}^{(A)}[\omega(x_{0},r)]\} \equiv \{\mathbf{1}, \mathbf{1}, \mathbf{1}_{\omega(x_{0},r)}(x), D^{a}\}, \text{ and } \tilde{\Gamma}(\nu) \equiv \mathbf{1} \\ \text{ for finite } \nu. \end{split}$$

Theorem I.4. Let $|\alpha| \equiv \sum_{i=1}^{n} \alpha_i$. The Cauchy sequence

$$\begin{split} \check{U}_1(0; Q(A, \omega(x_0, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) &\supseteq \check{U}_2(0; Q(A, \omega(x_0, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \\ \supseteq \cdots \text{ in } \check{F}_R[\{1, 1, E^1(\Omega), D^\alpha\}, \tilde{\Gamma}] \text{ (or } \check{U}_1^*(0; Q(A, \omega(x_0, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \\ \supseteq \check{U}_2^*(0; \cdots) \supseteq \cdots \text{ in } \check{F}_R^*[\{1, 1, E^1(\Omega), D^\alpha\}, \tilde{\Gamma}]) \text{ for } 1, 2, \cdots \in I_\alpha \text{ determines} \\ a \text{ set of analytic functions on a fixed } \omega(x_0, r) \text{ correspondent to } A > 0. \\ The \text{ similar argument holds in } \check{F}_R[\{1, 1, E^1(\Omega), D^\alpha\}, \tilde{\Gamma}] \text{ (or in } \\ \hat{F}_R[\{1, 1, E^1(\Omega), D^\alpha\}, \tilde{\Gamma}]). & \text{Here } I_\alpha \text{ is the totally ordered set constructed} \\ from \{\alpha\}. \end{split}$$

Proof. Since $\sup_{\omega(x_0,r)} |D^{\alpha}f| = ||\mathbf{1}_{\omega(x_0,r)}(x)D^{\alpha}f||_{1,1} \leq ||\mathbf{1}_$

Let $\Omega(\varepsilon) \equiv \{x ; x \in \Omega, \text{ dist } [\Omega^c, x] > \varepsilon \}.$

Theorem I-5. Let r < 1 and $M[x] \equiv \operatorname{Max}[x, 0]$. (i) $\bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1} |\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, M[r-j\varepsilon])), \tilde{\Gamma}, \{A^{|\alpha|+1} |\alpha|! (j\varepsilon)^{-|\alpha|}\}) and \bigcap_{l=1}^{\infty} \hat{U}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1} |\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}(0; Q(A, \omega(x_{0}, m[r-j\varepsilon])), \tilde{\Gamma}, \{A^{|\alpha|+1} |\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}(0; Q(A, \omega(x_{0}, m[r-j\varepsilon])), \tilde{\Gamma}, \{A^{|\alpha|+1} |\alpha|! (j\varepsilon)^{-|\alpha|}\}) for l \in I_{\alpha} hold for any positive integer j.$

(ii) $\bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r)), \tilde{\Gamma}, \{A^{|\alpha|+1}|\alpha|!\}) \subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}(0; Q(A, \omega(x_{0}, M[r-|\alpha|\varepsilon])), \tilde{\Gamma}, \{A^{|\alpha|+1}\varepsilon^{-|\alpha|}\}) \text{ for } l \in I_{\alpha} \text{ hold. Here } \mathbf{1}_{\omega(x_{0}, r)}(x) \in E^{1}(\Omega), \mathbf{1}_{\omega(x_{0}, M[r-j\varepsilon])}(x) \in E^{1}(\Omega(r-M[r-j\varepsilon])) \text{ and } \mathbf{1}_{\omega(x_{0}, M[r-|\alpha|\varepsilon])}(x) \in E^{1}(\Omega(r-M[r-j\varepsilon])) \text{ and } \mathbf{1}_{\omega(x_{0}, M[r-j\varepsilon])}(x) \in E^{1}(\Omega(r-M[r-j\varepsilon])) \text{ and } \mathbf{1}_$

Proof. Suppose that $\|\mathbf{1}_{\omega(x_0,r)}(x)D^{\alpha}f\|_{1,1}^* \leq A^{|\alpha|+1}|\alpha|!$ (for a fixed A > 0and for a fixed x_0) holds for any α . Since $\omega(x_0, r-j\varepsilon)$ is empty unless $j\varepsilon < 1$, $\|\mathbf{1}_{\omega(x_0,M[r-j\varepsilon])}(x)D^{\alpha}f\|_{1,1}^* \leq A^{|\alpha|+1}|\alpha|!$ $(j\varepsilon)^{-|\alpha|}$ for any α . Then (i) holds.

Furthermore $\|\mathbf{1}_{\omega(x_0,M[r-|\alpha|\varepsilon])}(x)D^{\alpha}f\|_{1,1}^* \leq A^{|\alpha|+1}|\alpha|! \leq A^{|\alpha|+1}|\alpha|^{|\alpha|}$ holds for any α . Since $\omega(x_0, r-|\alpha|\varepsilon)$ is empty unless $|\alpha|\varepsilon < 1$, $\|\mathbf{1}_{\omega(x_0,M[r-|\alpha|\varepsilon])}(x)D^{\alpha}f\|_{1,1}^* \leq A^{|\alpha|+1}(|\alpha|\varepsilon)^{|\alpha|}\varepsilon^{-|\alpha|} \leq A^{|\alpha|+1}\varepsilon^{-|\alpha|}$ holds for any α . Then (ii) holds.

Let $Q(A, \omega(x_0, r-\varepsilon), 2) \equiv \{2, 1, 1_{\omega(x_0, r-\varepsilon)}(x), D^{\alpha}\}$. $N_{\varepsilon}(u) \equiv ||1_{\omega(x_0, r-\varepsilon)}(x)u||_{2,1} = ||1_{\omega(x_0, r-\varepsilon)}(x)u||_{2,1}^*$ is used in the definition of $\check{U}_l^*(0; Q(A, \omega(x_0, r-\varepsilon), 2), \tilde{\Gamma}, \{\varepsilon_{\nu,i}\}) \equiv \check{U}_l(0; Q(A, \omega(x_0, r-\varepsilon), 2), \tilde{\Gamma}\{\varepsilon_{\nu,i}\})$ etc. in $\check{F}_R^*[\{2, 1, E^1(\Omega), D^{\alpha}\}, \tilde{\Gamma}] \equiv \check{F}_R[\{2, 1, E^1(\Omega), D^{\alpha}\}, \tilde{\Gamma}]$.

Theorem I-6. If u is determined by the Cauchy sequence $\{\check{U}_{l}(0; Q(A, \omega(x_{0}, r-c), 2), \tilde{\Gamma}, \{B^{|\alpha|+1}(|\alpha|/c)^{|\alpha|}\}); l=1, 2, \cdots \in I_{a}\}$ in $\check{F}_{R}[\{2, 1, E^{1}(\Omega), D^{a}\}, \tilde{\Gamma}]$ (or by the Cauchy sequence $\{\hat{U}_{l}(0; Q(A, \omega(x_{0}, r-c), 2), \tilde{\Gamma}, \{B^{|\alpha|+1}(|\alpha|/c)^{|\alpha|}\}; l=1, 2, \cdots$ in $I_{a}\}$ in $\hat{F}_{R}[\{2, 1, E^{1}(\Omega), D^{a}\}, \tilde{\Gamma}]$), there exists $C_{A} > 0$ such that u is determined by the Cauchy sequence $\{\check{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r-c')), \tilde{\Gamma}, \{C_{A}^{|\alpha|}|\alpha|!\}); l=1, 2, \cdots \in I_{a}\}$ in $\check{F}_{R}^{*}[\{1, 1, E^{1}(\Omega), D^{a}\}, \tilde{\Gamma}]$ (or by the Cauchy sequence $\{\hat{U}_{l}^{*}(0; Q(A, \omega(x_{0}, r-c')), \tilde{\Gamma}, \{C_{A}^{|\alpha|}|\alpha|!\}); l=1, 2, \cdots \in I_{a}\}$ in $\check{F}_{R}^{*}[\{1, 1, E^{1}(\Omega), D^{a}\}, \tilde{\Gamma}]$). Here C' > C > 0.

Proof. If $\|\mathbf{1}_{\omega(x_0,r-c)}(x)D^{\alpha}u\|_{2,1} \leq B^{|\alpha|+1}(|\alpha|/C)^{|\alpha|}$ holds, application of $\|\mathbf{1}_{\omega(x_0,r-c')}(x)D^{\alpha}u\|_{1,1}^* \leq \overline{C} \sum_{\beta|\leq n} \|\mathbf{1}_{\omega(x_0,r-c')}(x)D^{\alpha+\beta}u\|_{2,1}$ for $u \in C^{\infty}(\omega(x_0,r-c'))$ (cf. [1] p. 109) gives $\|\mathbf{1}_{\omega(x_0,r-c')}(x)D^{\alpha}u\|_{1,1}^* \leq C_M(B/C)^{|\alpha|}(|\alpha|+n)^{|\alpha|+n}$ with a constant $C_M > 0$. Since $C_M(B/C)^{|\alpha|}(|\alpha|+n)^{|\alpha|+n} \sim C_M(B/C)^{|\alpha|}e^{|\alpha|+n}/\sqrt{2\pi(|\alpha|+n)} \times (|\alpha|+n)!$ $= C_M(Be/C)^{|\alpha|}e^n (|\alpha|+n) (|\alpha|+n-1) \cdots (|\alpha|+1)/\sqrt{2\pi(|\alpha|+n)} \times |\alpha|! < C_A^{|\alpha|}$ $\times |\alpha|!$ holds for sufficiently large $|\alpha|$ and for a given $C_A > 0$, this

Theorem I-6 holds.

Acknowledgement. I would like to thank Prof. K. Kunugi for his stimulating conversations and encouragement.

References

- L. Hormander: Linear Partial Differential Operators. Springer, Berlin (1963).
- [2] K. Kunugi: Sur une generalisation de l'integrale. Fundamental and Applied Aspects of Mathematics, pp. 1-30 (1959).
- [3] Л. В. Овсянников: Сингулярный оператор в шкале банаховых пространств. ДАН, СССР, **163** (4), 819–822 (1965).
- [4] H. Yamagata: A treatment of some function spaces used for the study of hypoellipticity. II (to appear).