152. A Treatment of Some Function Spaces used for the Study of Hypoellipticity. I

By Hideo Yamagata
Department of Mathematics, College of Engineering, University of Osaka Prefecture, Mozu, Sakai City, Osaka

(Comm. by Kinjirô Kunugi, m. J. A., Nov. 13, 1972)

Introduction. The space $\mathfrak{F}(\Omega) \equiv \bigcap_{i \in I} B_{p_{i}, k_{i}}^{\mathrm{Ioc}}(\Omega)$ according to L. Hörmander [1] p. 45, p. 77 rather shows a common structure of the spaces belonging to a family. Then we will show here the above structure (with the extended form) described in the form of ranked space ([2] p. 4) in Theorem I-2 etc., § 1 , and show the concrete meaning of transcendental ranks appearing in our ranked space in Example I-1, §1. Next, we will show the concrete spaces as the special form of "the space in § 1 " in Theorems I-3, I-4, § 2. Our extension is based on the unified description of the theorems on hypoellipticity which is related to C^{∞} and related to a set of analytic functions defined in [3] p. 820 (cf. [1] p. 102, p. 178). The contents of this paper is a part of our further aim "the constructive systematization (i.e. ranked systematization by using transcendental ranks) for the theory of partial differential equation", because ranked space has a sort of totally ordered structure defined by the inclusion of pre-neighbourhoods with larger ranks.
§1. Extension of $\mathscr{F}(\Omega)$ as a ranked space. Hereafter, we use the following notations; $K \equiv\left\{k(\xi) ; 0 \leqslant k(\xi+\eta) \leqslant(1+C|\xi|)^{N} k(\eta)\right.$, where C, N $\left.>0, \xi, \eta \in R^{n}\right\}, B_{p, k} \equiv\left\{u ; u \in\left(\mathfrak{D}^{\prime}\right), \hat{u} \equiv \mathfrak{F} u \rightarrow\right.$ a function, $\|u\|_{p, k} \equiv\left((2 \pi)^{-n}\right.$ $\left.\left.\int|k(\xi) \hat{u}(\xi)|^{p} d \xi\right)^{1 / p}<+\infty\right\}$, where $k \in K, 1 \leqslant p \leqslant \infty$ and $\|u\|_{\infty, k} \equiv \operatorname{ess} \sup \mid k(\xi)$ $\hat{u}(\xi) \mid \cdot \quad B_{p, k}^{*} \equiv\left\{u ; u \in\left(\mathfrak{D}^{\prime}\right), \mathfrak{F}^{-1}(k(\xi) \hat{u}(\xi)) \rightarrow\right.$ a function, $\|u\|_{p, k}^{*} \equiv\left((2 \pi)^{-n}\right.$ $\left.\left.\int\left|\widetilde{\mho}^{-1}(k(\xi) \hat{u}(\xi))\right|^{p^{\prime}} d \xi\right)^{1 / p^{\prime}}<+\infty\right\}$, where $p^{\prime}=p /(p-1), p^{\prime}=1$ for $p=\infty$, and $p^{\prime}=\infty$ for $p=1 . \Omega$; open connected set in $R^{n} . L(\Omega) \subseteq\{f$; Carrier $f \subset \Omega\}$. P; diff. op. etc., $B_{p, k}^{100}(\Omega ; L, P) \equiv\left\{u ; P u \in\left(\mathfrak{D}_{\Omega}^{\prime}\right), \varphi P u \in B_{p, k}\right.$ for $\left.{ }^{\forall} \varphi \in L(\Omega)\right\}, B_{p, k}^{\mathrm{1oc}}(\Omega ; L, P) \equiv\left\{u ; P u \in\left(\mathfrak{D}_{\Omega}^{\prime}\right), \varphi P u \in B_{p, k}^{*}\right.$ for $\left.{ }^{\forall} \varphi \in L(\Omega)\right\}$, $B_{p, k}^{\mathrm{loc} *}(\Omega) \equiv B_{p, k}^{\mathrm{loc}}\left(\Omega ; C_{0}^{\infty}, 1\right)$. If $B_{p, k}^{\mathrm{loc}}(\Omega ; L, P)=B_{p, k}^{\mathrm{loc}}(\Omega ; \tilde{L}, P)$ or $B_{p, k}^{\mathrm{loc}} *(\Omega ; L, P)$ $=B_{p, k}^{\mathrm{loo} *}(\Omega ; \tilde{L}, P)$, we say that these spaces (in the left hand side) are countably local, where $\tilde{L}(\Omega)=$ countable subset of $L(\Omega)$. There exists $\tilde{C}_{0}^{\infty}(\Omega)$ for $C_{0}^{\infty}(\Omega)$ (cf. [1] p. 44).

Definition I-1. Let I be a totally ordered set of limit or isolated
ordinal numbers smaller than an inaccessible number, and let $\Gamma(n)$ be a monotone increasing function from $\{1,2, \cdots\}$ into I (not necessarily strict). Let $B_{p i, k_{i}}^{10 c}\left(\Omega ; L_{i}, P_{i}\right)$ and $B_{p_{i}, k_{i}}^{\mathrm{1oc} *}\left(\Omega ; L_{i}, P_{i}\right)$ be countably local by $\tilde{L}_{i}(\Omega)=\left\{\varphi_{\nu, i} ; \nu=1,2, \cdots\right\} \subseteq L_{i}(\Omega)$ for any $i \in I$. (This condition "countably local" can be omitted.) Let Q_{i} denote $\left[p_{i}, k_{i}, \tilde{L}_{i}(\Omega), P_{i}\right](i \in I)$, and let $Q \equiv\left\{Q_{i} ; i \in I\right\}$.
(i) Let $\hat{\Phi}_{Q} \equiv \bigcap_{i \in I} B_{p_{i}, k_{i}}^{\mathrm{oc}}\left(\Omega ; L_{i}, P_{i}\right)$ (as a set), let $\Phi_{Q}^{(l)}=\bigcap_{i \in I, i \leqslant t}$ $B_{p_{i}, k_{i}}^{\text {loc }}\left(\Omega ; L_{i}, P_{i}\right)$, where $l \in I$, let $B_{Q}^{(l)}$ be the set in $\Phi_{Q}^{(l+1)}$ satisfying $\overline{B_{Q}^{(l)}}$ $=\Phi_{Q}^{(l)}$ by the topology in $\Phi_{Q}^{(l)}$, and let ε be a positive rational number's double sequence $\left\{\varepsilon_{\nu, i}\right\}$. Let $\hat{\mathfrak{B}}_{[Q, \Gamma]}^{(l)} \equiv\left[\hat{U}_{l}\left(u_{0} ; Q, \Gamma, \varepsilon\right) \equiv\left\{u ; P_{i} u \in \hat{\Phi}_{Q}\right.\right.$, $\left\|\varphi_{\nu, i} P_{i}\left(u-u_{0}\right)\right\|_{p_{i}, k_{i}} \leqslant \varepsilon_{\nu, i}$ for any $\left.\left.i \leqslant l, \Gamma(\nu) \leqslant l\right\} ; u_{0}\left(\in B_{Q}^{(l)}\right), \varepsilon\right] . \quad \hat{F}_{R}[Q, \Gamma]$ denotes the pair $\left(\hat{\Phi}_{Q},\left\{\hat{\mathfrak{B}}_{[Q, \Gamma]}^{(l)} ; l \in I\right\}\right)$. Since $\hat{U}_{l}\left(u_{0} ; Q, \Gamma, \varepsilon\right)$ is a preneighbourhood, $u_{0} \oplus \hat{U}_{l}(u ; Q, \Gamma, \varepsilon)$ may happen. By the same way we can define $\hat{F}_{R[Q, \Gamma]}^{*} \equiv\left(\hat{\Phi}_{Q}^{*},\left\{\hat{\mathfrak{B}}_{[Q, \Gamma]}^{(l) *} ; l \in I\right\}\right) \equiv\left(\hat{\Phi}_{Q}^{*},\left\{\left[\hat{U}_{l}^{*}\left(u_{0} ; Q, \Gamma, \varepsilon\right) ; u_{0}, \varepsilon\right] ; l \in I\right)\right.$ by the norms $\|\cdots\|_{p i, k_{i}}^{*} . \quad \hat{F}_{R}[Q] \equiv\left\{\left(\hat{\Phi}_{Q},\left\{\hat{\mathfrak{P}}_{[Q, \Gamma]}^{(l)} ; l \in I_{\Gamma}\right\}\right) ; \Gamma\right\}$ etc. are also defined by using $I_{\Gamma} \equiv \bigcup_{n}\{j ; 1 \leqslant j \leqslant \Gamma(n)\}$.
(ii) Let $\breve{\Phi}_{Q} \equiv \bigcup_{i \in I} B_{p_{i}, k_{i}}^{\mathrm{oc}}\left(\Omega ; L_{i}, P_{i}\right)$ (as a set). Let $\check{\mathfrak{B}}_{[Q, \Gamma]}^{(l)} \equiv\left[\check{U}_{l}\left(u_{0}\right.\right.$; $Q, \Gamma, \varepsilon) \equiv\left\{u ; P_{i} u \in \Phi_{Q}^{(\lambda)},\left\|\varphi_{\nu, i} P_{i}\left(u-u_{0}\right)\right\|_{p_{i}, k_{i}} \leqslant \varepsilon_{\nu, i}\right.$ for any $\left.i \leqslant l, \Gamma(\nu) \leqslant l\right\}$; $\left.u_{0}\left(\in B_{Q}^{(l)}\right), \varepsilon\right] . \quad \check{F}_{R}[Q, \Gamma]$ denotes the pair $\left(\check{\Phi}_{Q},\left\{\check{\mathfrak{B}}_{[Q, \Gamma]}^{(l)} ; l \in I\right\}\right)$.

By the same way we can define $\left.\stackrel{F}{F}_{R}^{*}[Q, \Gamma] \equiv\left(\Phi_{Q}^{*},\left\{\mathfrak{B}_{[Q, \Gamma]}^{(l)}\right)^{*} ; l \in I\right\}\right)$ $\equiv\left(\check{\Phi}_{R}^{*},\left\{\left[\check{U} \check{U}_{l}^{*}\left(u_{0} ; Q, \Gamma, \varepsilon\right) ; u_{0}, \varepsilon\right] ; l \in I\right\}\right)$ by the norms $\|\cdots\|_{p i, k_{i}}^{*}$.

The definition of $\left\{B_{Q}^{(L)}\right\}$ is possible under the norms $\|\cdots\|_{p, k}$ and $\|\cdots\|_{p, k}^{*}$. The use of $B_{Q}^{(l)}$ and rational $\varepsilon_{\nu, i}$ sometimes makes the construction of ranked space by countable pre-neighbourhoods possible.

Definition I-2. (i) Let $\hat{\Phi}_{Q}^{w} \equiv\left\{\bigcap_{i \in I, p_{i} \geqslant 2} B_{p_{i}, k_{i}}^{\mathrm{1oc}}\left(\Omega ; L_{i}, P_{i}\right)\right\} \cap\left\{\bigcap_{i \in I, 1 \leqslant p_{i}<2}\right.$ $\left.B_{p_{i}, k_{i}}^{\mathrm{Ioc} *}\left(\Omega ; L_{i}, P_{i}\right)\right\} \quad$ and $\operatorname{let} \hat{\Phi}_{Q}^{s} \equiv\left\{\bigcap_{i \in I, p_{i} \geqslant 2} B_{p_{i}, k_{i}}^{\mathrm{oc} * \mathcal{K}_{i}}\left(\Omega ; L_{i}, P_{i}\right)\right\} \cap\left\{\bigcap_{i \in I, 1 \leqslant p_{i}<2}\right.$ $B_{p i, k_{i}}^{10}\left(\Omega ; L_{i}, P_{i}\right) . \quad \hat{F}_{Q}^{w}[Q, \Gamma] \equiv\left(\hat{\Phi}_{Q}^{w},\left\{\hat{\mathfrak{Q}}_{[Q, \Gamma]}^{(l), w} ; l \in I\right\}\right)\left(\hat{F}_{R}^{s}[Q, \Gamma] \equiv\left(\hat{\Phi}_{Q}^{s},\left\{\hat{\mathfrak{B}}_{[Q, T]}^{(L), s} ;\right.\right.\right.$ $l \in I\})$) can be defined by using the norms $\|\cdots\|_{p_{i}, k_{i}}^{*}$ for $1 \leqslant p_{i}<2\left(p_{i} \geqslant 2\right)$ and by using the norms $\left\|_{\cdot} \cdots\right\|_{p_{i}, k_{i}}$ for $p_{i} \geqslant 2\left(1 \leqslant p_{i}<2\right)$.
(ii) $\quad \check{F}_{Q}^{w}[Q, \Gamma] \equiv\left(\breve{\Phi}_{Q}^{w},\left\{\mathfrak{R}_{[Q, \Gamma]}^{(l), w} ; l \in I\right\}\right)$ and $\check{F}_{R}^{s}[Q, \Gamma] \equiv\left(\check{\Phi}_{Q}^{s},\left\{\check{\mathfrak{W}}_{[Q, \Gamma]}^{(l), s} ; l \in I\right\}\right)$ can be defined by the similar method as (i) using $\cup_{i \in I, p_{i} \geqslant 2}$ etc. instead of $\bigcap_{i \in I, p_{i} \geqslant 2}$ etc. This $\check{F}_{R}^{w}[Q, \Gamma]$ is the widest space.

Theorem I-1. Each one of $\hat{F}_{R}[Q, \Gamma], \check{F}_{R}[Q, \Gamma], \hat{F}_{R}^{*}[Q, \Gamma], \check{F}_{R}^{*}[Q, \Gamma]$, $\hat{F}_{R}^{w}[Q, \Gamma], \hat{F}_{R}^{s}[Q, \Gamma], \check{F}_{R}^{w}[Q, \Gamma]$ and $\check{F}_{R}^{s}[Q, \Gamma]$ is a ranked space.

Proof. Since for any $v_{0} \in B_{Q}^{(l)}$ and for any positive rational number's sequence $\varepsilon \equiv\left\{\varepsilon_{\nu, i}\right\}$ there exist $w_{0} \in B_{Q}^{(l+1)}$ and $\varepsilon^{\prime} \equiv\left\{\varepsilon_{\nu, i}^{\prime}\right\}$ (satisfying $\varepsilon_{\nu, i}^{\prime} \in\left(0, \varepsilon_{\nu, i}\right)$) such that $\hat{U}_{l}\left(v_{0} ; Q, \Gamma, \varepsilon\right) \supseteq \hat{U}_{l+1}\left(w_{0} ; Q, \Gamma, \varepsilon^{\prime}\right)$ holds from the property of $B_{Q}^{(L)}$, then $\hat{F}_{R}[Q, \Gamma]$ becomes a ranked space. By the same way other spaces also become ranked spaces.

Let I be a totally ordered set consisting of limit or isolated ordinal numbers smaller than an (inaccessible) number ω_{ν}, let $I^{\prime} \subseteq I$, and let $I^{\prime \prime}=\bigcup_{j=1}^{\infty}\left\{i ; 1 \leqslant i \leqslant i_{j}, i_{j} \in I\right\} \subseteq I^{\prime}$.

Let $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right] \equiv \hat{F}_{R}[Q, \Gamma]$ by $Q=Q(c) \equiv\left\{Q_{i}(c)\right\} \equiv\left\{\left[p_{i}, k_{i}, \tilde{C}_{0}^{\infty}(\Omega), 1\right]\right\}$ and by $\varepsilon_{\nu, i} \equiv \varepsilon$ for $\forall_{\nu},{ }^{\forall} i$ etc. Let $\mathfrak{B}\left\{u_{i}\right\}=\left[\left\{u_{i} ; i \in I^{\prime}, i \geqslant l\right\} ; l \in I^{\prime}\right]$.

Theorem I.2. (i) If $\left\{u_{i} ; i \in I^{\prime}\right\}$ tends to u in $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right]$ uniquely, $\mathfrak{B}\left\{u_{i}\right\}$ becomes a filter base and tends to u in $\mathfrak{F}(\Omega) \equiv \bigcap_{i \in I} B_{p_{i} k_{i}}^{1 \mathrm{loc}}(\Omega)$.
(ii) Suppose that $\mathfrak{B}\left\{u_{i}\right\}$ tends to u in $\mathfrak{F}(\Omega)$, and that for any $l \in I^{\prime \prime}$ and for any $\varepsilon>0$ there exists a pair $\{\gamma(l), \bar{l}(l, \varepsilon)\}$ of mappings satisfying the following conditions $\left(\mathbf{1}^{\circ}\right),\left(\mathbf{2}^{\circ}\right)$. Here γ is an one-to-one monotone increasing mapping from $I^{\prime \prime}$ to a subset of I, and $l(l, \varepsilon)$ is a mapping from $I^{\prime \prime} \times\{\varepsilon ; \varepsilon>0\}$ to $I^{\prime} . \quad\left(\mathbf{1}^{\circ}\right) \quad \sup \left\{\left\|\varphi_{\nu}\left(u_{i}-u\right)\right\|_{p_{\mu}, k_{\mu}} ; \Gamma(\nu), \mu \leqslant \gamma(l)(\mu \in I\right.$, $\nu=1,2, \cdots), i \geqslant \bar{l}(l, \varepsilon)\}<\varepsilon . \quad\left(\mathbf{2}^{\circ}\right) \quad \bigcup_{n \in I^{\prime \prime}}\{i ; 0<i \leqslant \gamma(n)\}=I . \quad$ If $\quad\left(\mathbf{3}^{\circ}\right)$ $\left\{w ; w \in \Phi_{Q(c)}^{(l)},\left\|\varphi_{\nu}(w-u)\right\|_{p_{\mu}, k_{\mu}}<\varepsilon\right.$ for $\left.\Gamma(\nu), \mu \leqslant l(\mu \in I, \nu=1,2, \cdots)\right\} \cap B_{Q(c)}^{(L)}$ $\neq \emptyset$ holds for any $l \in I$ and for any $\varepsilon>0$, then $u_{i}\left(i \in I^{\prime}\right)$ tends to u uniquely in $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right]$.

Proof. (i) Let $I\left[\gamma_{1}\right]$ be a subset of I and γ_{1} be a monotone increasing mapping from $I\left[\gamma_{1}\right]$ satisfying $\bigcup_{t \in I\left[r_{1}\right.}\left\{i ; 1 \leqslant i \leqslant \gamma_{1}(l)\right\}=I$. If $\left\{u_{i} ; i \in I^{\prime}\right\}$ tends to u in $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right]$, there exists a Cauchy sequence $\left\{\hat{U}_{r_{1(l)}}\left(\tilde{u}_{l} ; Q(c), \Gamma\right.\right.$, $\left\{\varepsilon^{(l)}\right\}$) $\left.; l \in I\left[\gamma_{1}\right]\right\}$ (defined by some γ_{1} and satisfying $\hat{U}_{r_{1}(l)}\left(u ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right)$ $\supseteq \hat{U}_{r_{1}\left(l^{\prime}\right)}\left(\tilde{u}_{l^{\prime}} ; Q(c), \Gamma,\left\{\varepsilon^{\left(l^{\prime}\right)}\right\}\right)$ for $\left.l \leqslant l^{\prime}\right)$ such that the following (a) $\sim(\mathrm{d})$ hold [2] p. 4. (a) $\hat{U}_{r_{1}(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \in \hat{\mathfrak{B}}_{[Q, \Gamma]}^{\left(\gamma_{1}(l)\right.}$. (b) For any $l \in I\left[\gamma_{1}\right]$ there exists $(l \leqslant) \lambda=\lambda(l) \in I\left[\gamma_{1}\right]$ such that $\gamma_{1}(\lambda)<\gamma_{1}(\lambda+1)$ hold. (c) There exists a monotone increasing function $\gamma_{2}(l)$ (in wide sense) from $I\left[\gamma_{1}\right]$ to I^{\prime} such that $\hat{U}_{r_{1}(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \ni u_{i}$ holds for any $i \geqslant \gamma_{2}(l)\left(i \in I^{\prime}\right)$. (d) $\bigcap_{t \in I\left[r_{1}\right]} \hat{U}_{r_{1}(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \equiv\{u\}$. Then $\varepsilon^{(l)}>0$ is monotone (in wide sense) decreasing as the function of l, and $\mathfrak{B}\left\{\varepsilon^{(i)}\right\} \equiv\left[\left\{\varepsilon^{(i)} ; i \in I\left[\gamma_{1}\right], i \geqslant l\right\}\right.$; $\left.l \in I\left[\gamma_{1}\right]\right]$ tends to 0 in R^{1}. Since $\hat{U}_{r_{1}(l)}\left(u ; Q(c), \Gamma,\left\{2 \varepsilon^{(l)}\right\}\right) \equiv\left\{w ; w \in \hat{\Phi}_{Q(c)}\right.$, $\left\|\varphi_{\nu}(w-u)\right\|_{p_{i}, k_{i}} \leqslant 2 \varepsilon^{(l)}$ for any $\left.i \leqslant \gamma_{1}(l), \Gamma(\nu) \leqslant \gamma_{1}(l)\right\} \supseteq \hat{U}_{r_{1}(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right)$ $\ni u_{i}$ for $i \geqslant \gamma_{2}(l)\left(i \in I^{\prime}\right)$ holds, then $\mathfrak{B}\left\{u_{i}\right\}$ tends to u in $\mathfrak{F}(\Omega)$. Namely the filter made from $\mathfrak{B}\left\{u_{i}\right\}$ contains all neighbourhoods of u by $\left\|\varphi_{\nu} \cdots\right\|_{p_{\mu}, k_{\mu}}$ in $\mathfrak{F}(\Omega)$ for any fixed (μ, ν). Even if $\varepsilon^{(l)}=\varepsilon^{\left(l^{\prime}\right)}$ and $\tilde{u}_{l}=\tilde{u}_{l}$, hold for $l<l^{\prime}\left(l, l^{\prime} \in I\left[\gamma_{1}\right]\right)$, and if $\gamma_{1}(l)<\gamma_{1}\left(l^{\prime}\right), \hat{U}_{r_{1}(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{2 \varepsilon^{(l)}\right\}\right) \supset(\neq) \hat{U}_{r_{1}\left(l^{\prime}\right)}$ ($\left.\tilde{u}^{\prime} ; Q(c), \Gamma,\left\{2 \varepsilon^{\left(l^{\prime}\right)}\right\}\right)$ holds. If the description of the ranked space by countable pre-neighbourhoods is possible, $I\left[\gamma_{1}\right]$ may become a countable set.
(ii) Let $\left\{l_{i j} ; i \in I^{\prime \prime}\right\}$ be a sequence of limit or isolated ordinal numbers (satisfying $l_{i j} \leqslant l_{i^{\prime} j}$ for $i<i^{\prime}$ in $I^{\prime \prime}$) such that $I^{\prime} \ni l_{i j}$ $\geqslant \operatorname{Max}[\bar{l}(i, 1 / j), i]$ holds.

Since there exists $\tilde{u}_{i j} \in\left\{w ; w \in \Phi_{Q(c)}^{(\gamma(i))},\left\|\varphi_{\nu}(w-u)\right\|_{p_{\mu}, k_{\mu}}<1 / j\right.$ for $\Gamma(\nu)$, $\mu \leqslant \gamma(i)\left(\mu \in I^{\prime}, \nu\right.$ natural number $\left.)\right\} \cap B_{Q(c)}^{(r(i))}\left(i \in I^{\prime \prime}\right)$ from (3 $\left.{ }^{\circ}\right), \hat{U}_{\gamma(i)}\left(\tilde{u}_{i j} ; Q(c)\right.$, $\Gamma,\{2 / j\}) \supseteq\left\{w ; w \in \hat{\Phi}_{Q(c)},\left\|\varphi_{\nu}(w-u)\right\|_{p_{i}, k_{i}} \leqslant 1 / j\right.$ for any $\left.i \leqslant \gamma(i), \Gamma(\nu) \leqslant \gamma(i)\right\}$ $\supseteq\left\{u_{i^{\prime}} ; i^{\prime} \geqslant l_{i j}, i^{\prime} \in I^{\prime}\right\}$ holds from the condition ($\mathbf{1}^{\circ}$) of Theorem I-2 (ii). Since $\hat{U}_{r(i)}\left(\tilde{u}_{i, 4 j} ; Q(c), \Gamma,\left\{2 / 4^{j}\right\}\right) \supseteq \hat{U}_{r(\tilde{i})}\left(\tilde{u}_{i, 4 j+1} ; Q(c), \Gamma,\left\{2 / 4^{j+1}\right\}\right)(i<\tilde{i})$ $(j=1,2, \cdots)$ holds, if $\hat{U}_{r(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \equiv \hat{U}_{r(l)}\left(\tilde{u}_{i, 4 j+1} ; Q(c), \Gamma,\left\{2 / 4^{j+1}\right\}\right)$
for $i<l \leqslant \tilde{i}$ (the condition of $I^{\prime \prime}$ is derived from here), $\left\{\hat{U}_{r(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma\right.\right.$, $\left.\left.\left\{\varepsilon^{(l)}\right\}\right) ; l \in I^{\prime \prime}\right\}$ is a Cauchy sequence in $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right]$ such that $\bigcap_{l \in I^{\prime}} \hat{U}_{\gamma(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \equiv\{u\}$ and $\hat{U}_{\gamma(l)}\left(\tilde{u}_{l} ; Q(c), \Gamma,\left\{\varepsilon^{(l)}\right\}\right) \supseteq\left\{u_{i} ; i>l_{i(4 j), 4 i}\right.$, $\left.i \in I^{\prime}\right\}$ for $i\left(4^{j-1}\right) \leqslant l<i\left(4^{j}\right)$ hold, where $i\left(4^{j}\right)=i$ in $\tilde{u}_{i, 4 j}$ and $i\left(4^{j+1}\right)=\tilde{i}$ in $\tilde{u}_{\tilde{i}, j^{j+1}}$. Namely, $u_{i}\left(i \in I^{\prime}\right)$ tends to u uniquely in $\hat{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, \Gamma\right]$.

If I^{\prime} is countable, $\left(\mathbf{1}^{\circ}\right)\left(\mathbf{2}^{\circ}\right)$ and $\left(3^{\circ}\right)$ naturally hold. If we use $\left\{\varepsilon_{\nu, i}\right\}$ not satisfying $\varepsilon_{\nu, i} \equiv \varepsilon$, it seems that we may use an inaccessible number ω_{ν}.

The ranked description of the following concrete space gives an interpretation to the use of transcendental number.

Example I-1. Let us treat a compact set Ω^{2} in R^{2} as Ω. Let $\left\{k_{i}(\xi) ; i \in I\right\}$ be an ordered set made from $\left\{k_{(m, n, \delta)}(\xi) \equiv 1+\exp \left\{\left(\log _{e} r\right)\right.\right.$ $\left.\left(m \sin ^{2}(2 \pi n \theta+\delta)+(1+1 / m)\right)\right\} ; m, n$ are positive integer, $\left.\delta \in[0,2 \pi)\right\}$ and $p_{i} \equiv p \geqslant 1$. Let $\Omega(1)=\{(r \cos \theta, r \sin \theta) ; r>1, \theta \in[0,2 \pi)\}$, let $1_{\Omega(1)}(\xi)$ be the characteristic function of $\Omega(1)$ and let $\widetilde{1}_{a_{(1)}}(x)$ be its inverse Fourier transform. If $\left\|\varphi_{\nu} \cdot \widetilde{1}_{\Omega(1)}(x) * u\right\|_{p, 1+\exp \left\{\left(1 \log _{e} r\right) \times(1+1 / m)\right\}}$ (for $\left.\varphi_{\nu} \in \tilde{C}_{0}^{\infty}\right)$ is used as the topology $\tau_{(m, n, \delta) \nu}$, for the space $B_{p_{i, k}}^{\text {loo }}\left(\Omega ; L_{i}, P_{i}\right)$ by $\left\|\varphi_{\nu} \cdot \widetilde{1}_{\Omega(1)}(x) * u\right\|_{p, k_{(m, n, \delta)}(\xi)}$, and if $\bar{B}_{\tau}^{\mathrm{loc}}$ denotes the closure of $B_{p, k}^{\mathrm{loc}}$ by $\tau, \bigcap_{(m, n, \dot{\delta})} \bigcap_{\nu=1}^{\infty} \bar{B}_{\tau(m, n, \dot{\delta}), \nu}^{\mathrm{loc}}\left(\Omega ; \widetilde{C}_{0}^{\infty}\right.$, $\left.\tilde{\mathbf{1}}_{\Omega(1)}(x) *\right) \equiv \bigcap_{m=1}^{\infty} \bigcap_{\nu=1}^{\infty} \bar{B}_{\tau(m, 0,0), \nu}^{\mathrm{loc}}\left(\Omega ; \tilde{C}_{0}^{\infty}, \widetilde{\mathbf{1}}_{\Omega(1)}(x) *\right)$ holds. $\bigcap_{(m, n, \delta)} B_{p, k_{(m, n, \delta)}^{\mathrm{oo}}}$ $\left(\Omega ; \tilde{C}_{0}^{\infty}, \widetilde{1}_{\Omega(1)}(x) *\right)$ can be interpreted as the family of such $\left\{\tau_{(m, n, \delta), \nu}, \bigcap_{m=1}^{\infty}\right.$ $\left.\bigcap_{\nu=1}^{\infty} \bar{B}_{\tau_{(m, 0,0), \nu}^{100}}\left(\Omega ; \widetilde{C}_{0}^{\infty}, \widetilde{1}_{\Omega(1)}(x) *\right)\right\}$. This interpretation means that the description by the transcendental factors is the set of the descriptions by the suitable countable factors.

§2. The space C^{∞} and the space of analytic functions.

Theorem I-3. If I has countable elements, if $p_{i} \geqslant 1$ and if $k_{i}(\xi)$ $=(1+|\xi|)^{i}, \mathscr{F}(\Omega) \equiv \check{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, 1\right]\left(\equiv C^{\infty}(\Omega)\right.$ as a set) holds (cf. Theorem I-2).

Proof. We can prove $\mathscr{F}(\Omega) \equiv \check{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, 1\right]$ by the similar argument to Theorem I-2. Let $p \geqslant 1$. If $k_{i}(\xi)=(1+|\xi|)^{i},(1+|\xi|)^{j} / k_{i}(\xi)$ $=(1+|\xi|)^{j-i} \in L_{p^{\prime}}$ is valid for $j \leqslant i-n-1$, and for any p^{\prime} satisfying $1 / p+1 / p^{\prime}=1$. Then $B_{p_{i}, k_{i}}^{\mathrm{Lo}}(\Omega) \subset C^{j}(\Omega),\left(j \leqslant i-n-1, p_{i} \geqslant 1\right)$ follows from Hörder's inequality etc. (cf. [1] p. 40, p. 44). Because $\xi^{\alpha} \hat{u}(\xi)=\left(\xi^{\alpha} /(1+|\xi|)^{i}\right)$ $\left((1+\mid \xi)^{i} \hat{u}(\xi)\right)$ is integrable for $|\alpha| \leqslant j$. Namely $\bigcap_{i=1}^{\infty} B_{p i, k_{i}}^{100}(\Omega) \subseteq C^{\infty}(\Omega)$ holds. Since $C^{\infty}(\Omega) \subseteq B_{p i, k_{i}}^{\mathrm{Ioc}}(\Omega)$ follows from the Fourier invariance of (ভ) (cf. [1] p. 37, p. 44 etc.), $C^{\infty}(\Omega) \subseteq \bigcap_{i=1}^{\infty} B_{p_{i}, k_{i}}^{1 \mathrm{oc}}(\Omega)$ holds. Because (ভ) $\subset L_{p, k} \equiv\left\{v ; V\right.$ measurable, $\left.\|k v\|_{p}<+\infty\right\}$ holds in the topological sense. Hence $\check{F}_{R}\left[\Omega,\left\{p_{i}, k_{i}\right\}, 1\right] \equiv \bigcap_{i=1}^{\infty} B_{p_{i}, k_{i}}^{1 \mathrm{oc}}(\Omega) \equiv C^{\infty}(\Omega)$ holds as a set.
$E^{1}(\Omega) \equiv\left\{1_{\omega\left(x_{0}, r\right)}(x) ; \omega\left(x_{0}, r\right) \equiv\left\{x ;\left\|x-x_{0}\right\|<r\right\} \subset \Omega, r \in(0,1]\right.$ rational, x_{0} rational point in $\Omega\}$, where $1_{A}(x)$ is the characteristic function of A. Let $Q=Q\left(A, \omega\left(x_{0}, r\right)\right) \equiv\left\{Q_{\alpha}^{(A)}\left[\omega\left(x_{0}, r\right)\right]\right\} \equiv\left\{1,1,1_{\omega\left(x_{0}, r\right)}(x), D^{\alpha}\right\}$, and $\tilde{\Gamma}(\nu) \equiv 1$ for finite ν.

Theorem I.4. Let $|\alpha| \equiv \sum_{i=1}^{n} \alpha_{i}$. The Cauchy sequence
$\check{U}_{1}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right) \supseteq \breve{U}_{2}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ $\supseteq \cdots$ in $\check{F}_{R}\left[\left\{1,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]\left(\right.$ or $\check{U}_{1}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ $\supseteq \check{U}_{2}^{*}(0 ; \cdots) \supseteq \cdots$ in $\left.\check{F}_{R}^{*}\left[\left\{1,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]\right)$ for $1,2, \cdots \in I_{\alpha}$ determines a set of analytic functions on a fixed $\omega\left(x_{0}, r\right)$ correspondent to $A>0$. The similar argument holds in $\hat{F}_{R}\left[\left\{1,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]$ (or in $\left.\hat{F}_{R}\left[\left\{1,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]\right) . \quad$ Here I_{α} is the totally ordered set constructed from $\{\alpha\}$.

Proof. Since $\sup _{\omega\left(x_{0}, r\right)}\left|D^{\alpha} f\right|=\left\|1_{\omega\left(x_{0}, r\right)}(x) D^{\alpha} f\right\|_{1,1}^{*} \leqslant\left\|1_{\omega\left(x_{0}, r\right)}(x) D^{\alpha} f\right\|_{1,1}$ $\leqslant A^{|\alpha|+1}|\alpha|$! holds for any $\alpha, f \in \bigcap_{i=1}^{\infty} \check{U}_{l}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ $\subseteq \bigcap_{l=1}^{\infty} \check{U}_{i}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ becomes an analytic function in $\omega\left(x_{0}, r\right)$. By the same way $f \in \bigcap_{l=1}^{\infty} \hat{U}_{l}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right.$ $\subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ is also analytic in $\omega\left(x_{0}, r\right)$. The argument in () for \tilde{F}_{R}^{*} etc. are trivial.

Let $\Omega(\varepsilon) \equiv\left\{x ; x \in \Omega\right.$, $\left.\operatorname{dist}\left[\Omega^{c}, x\right]>\varepsilon\right\}$.
Theorem I.5. Let $r<1$ and $M[x] \equiv \operatorname{Max}[x, 0]$. (i) $\bigcap_{l=1}^{\infty} \check{U}_{l}^{*}(0$; $\left.Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right) \subseteq \bigcap_{l=1}^{\infty} \check{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, M[r-j \varepsilon]\right)\right), \tilde{\Gamma}\right.$, $\left.\left\{A^{|\alpha|+1}|\alpha|!\left(j_{\varepsilon}\right)^{-|\alpha|}\right\}\right)$ and $\bigcap_{l=1}^{\infty} \hat{U}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right) \subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}$ $\left(0 ; Q\left(A, \omega\left(x_{0}, M[r-j \varepsilon]\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!(j \varepsilon)^{-|\alpha|}\right\}\right)$ for $l \in I_{\alpha}$ hold for any positive integer j.
(ii) $\bigcap_{l=1}^{\infty} \check{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right) \subseteq \bigcap_{l=1}^{\infty} \check{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}\right.\right.\right.$, $\left.M[r-|\alpha| \varepsilon])), \tilde{\Gamma},\left\{A^{|\alpha|+1} \varepsilon^{-|\alpha|}\right\}\right)$ and $\bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1}|\alpha|!\right\}\right)$ $\subseteq \bigcap_{l=1}^{\infty} \hat{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, M[r-|\alpha| \varepsilon]\right)\right), \tilde{\Gamma},\left\{A^{|\alpha|+1} \varepsilon^{-|\alpha|}\right\}\right)$ for $l \in I_{\alpha}$ hold. Here $1_{\omega\left(x_{0}, r\right)}(x) \in E^{1}(\Omega), 1_{\omega\left(x_{0}, M\left[r-j_{\epsilon}\right]\right)}(x) \in E^{1}(\Omega(r-M[r-j \varepsilon]))$ and $1_{\omega\left(x_{0}, M[r-|\alpha| \epsilon]\right)}(x)$ $\in E^{1}(\Omega(r-M[r-|\alpha| \varepsilon]))$ holds in $Q\left(A, \omega\left(x_{0}, r\right)\right), Q\left(A, \omega\left(x_{0}, M[r-j \varepsilon]\right)\right)$ and $Q\left(A, \omega\left(x_{0}, M[r-|\alpha| \varepsilon]\right)\right)$ respectively.

Proof. Suppose that $\left\|1_{\omega\left(x_{0}, r\right)}(x) D^{\alpha} f\right\|_{1,1}^{*} \leqslant A^{|\alpha|+1}|\alpha|$! (for a fixed $A>0$ and for a fixed x_{0}) holds for any α. Since $\omega\left(x_{0}, r-j \varepsilon\right)$ is empty unless $j \varepsilon<1,\left\|1_{\omega\left(x_{0}, M\left[r-j_{\epsilon}\right]\right.}(x) D^{\alpha} f\right\|_{1,1}^{*} \leqslant A^{|\alpha|+1}|\alpha|!(j \varepsilon)^{-|\alpha|}$ for any α. Then (i) holds.

Furthermore $\left\|1_{\omega(x, M[r-|\alpha| \varepsilon]\rangle}(x) D^{\alpha} f\right\|_{1,1}^{*} \leqslant A^{|\alpha|+1}|\alpha|!\leqslant A^{|\alpha|+1}|\alpha|^{|\alpha|}$ holds for any α. Since $\omega\left(x_{0}, r-|\alpha| \varepsilon\right)$ is empty unless $|\alpha| \varepsilon<1, \| 1_{\omega\left(x_{0}, M[r-|\alpha| \varepsilon]\right)}$ (x) $D^{\alpha} f \|_{1,1}^{*} \leqslant A^{|\alpha|+1}(|\alpha| \varepsilon)^{|\alpha|} \varepsilon^{-|\alpha|} \leqslant A^{|\alpha|+1} \varepsilon^{-|\alpha|}$ holds for any α. Then (ii) holds.

Let $Q\left(A, \omega\left(x_{0}, r-\varepsilon\right), 2\right) \equiv\left\{2,1,1_{\omega\left(x_{0}, r-\varepsilon\right)}(x), D^{\alpha}\right\} . \quad N_{\epsilon}(u) \equiv \| 1_{\omega\left(x_{0}, r-\epsilon\right)}$ $(x) u\left\|_{2,1}=\right\| 1_{\omega\left(x_{0}, r-s\right)}(x) u \|_{2,1}^{*}$ is used in the definition of $\ddot{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}\right.\right.\right.$, $\left.r-\varepsilon), 2), \tilde{\Gamma},\left\{\varepsilon_{\nu, i}\right\}\right) \equiv \check{U}_{l}\left(0 ; Q\left(A, \omega\left(x_{0}, r-\varepsilon\right), 2\right), \tilde{\Gamma}\left\{\varepsilon_{\nu, i}\right\}\right)$ etc. in $\check{F}_{R}^{*}\left[\left\{2,1, E^{1}(\Omega)\right.\right.$, $\left.\left.D^{\alpha}\right\}, \tilde{\Gamma}\right] \equiv \check{F}_{R}\left[\left\{2,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]$.

Theorem I.6. If u is determined by the Cauchy sequence $\left\{\check{U}_{l}\left(0 ; Q\left(A, \omega\left(x_{0}, r-c\right), 2\right), \tilde{\Gamma},\left\{B^{|\alpha|+1}(|\alpha| / c)^{|\alpha|}\right\}\right) ; l=1,2, \cdots \in I_{\alpha}\right\}$ in $\check{F}_{R}[\{2$, $\left.\left.1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]$ (or by the Cauchy sequence $\left\{\hat{U}_{l}\left(0 ; Q\left(A, \omega\left(x_{0}, r-c\right), 2\right)\right.\right.$, $\tilde{\Gamma},\left\{B^{|\alpha|+1}(|\alpha| / c)^{|\alpha|}\right) ; l=1,2, \cdots$ in $\left.I_{\alpha}\right\}$ in $\left.\hat{F}_{R}\left[\left\{2,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]\right)$, there exists $C_{A}>0$ such that u is determined by the Cauchy sequence $\left\{\check{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r-c^{\prime}\right)\right), \tilde{\Gamma},\left\{C_{A}^{|\alpha|}|\alpha|!\right\}\right) ; l=1,2, \cdots \in I_{\alpha}\right\}$ in $\check{F}_{R}^{*}\left\{\left\{1,1, E^{1}(\Omega)\right.\right.$, $\left.\left.D^{\alpha}\right\}, \tilde{\Gamma}\right]$ (or by the Cauchy sequence $\left\{\hat{U}_{l}^{*}\left(0 ; Q\left(A, \omega\left(x_{0}, r-c^{\prime}\right)\right), \tilde{\Gamma},\left\{C_{A}^{|\alpha|}|\alpha|!\right\}\right)\right\}$ in $\left.\hat{F}_{R}^{*}\left[\left\{1,1, E^{1}(\Omega), D^{\alpha}\right\}, \tilde{\Gamma}\right]\right)$. Here $C^{\prime}>C>0$.

Proof. If $\left\|1_{\omega\left(x_{0}, r-c\right)}(x) D^{\alpha} u\right\|_{2,1} \leqslant B^{|\alpha|+1}(|\alpha| / C)^{|\alpha|}$ holds, application of $\left\|1_{\omega\left(x_{0}, r-c^{\prime}\right)}(x) D^{\alpha} u\right\|_{1,1}^{*} \leqslant \bar{C} \sum_{\beta \mid \leqslant n}\left\|1_{\omega\left(x, r-c^{\prime}\right)}(x) D^{\alpha+\beta} u\right\|_{2,1}$ for $u \in C^{\infty}\left(\omega\left(x_{0}, r-c^{\prime}\right)\right)$ (cf. [1] p. 109) gives $\left\|1_{\omega\left(x_{0}, r-c^{\prime}\right)}(x) D^{\alpha} u\right\|_{1,1}^{*} \leqslant C_{M}(B / C)^{|\alpha|}(|\alpha|+n)^{|\alpha|+n}$ with a constant $C_{M}>0$.
Since $C_{M}(B / C)^{|\alpha|}(|\alpha|+n)^{|\alpha|+n} \sim C_{M}(B / C)^{|\alpha|} e^{|\alpha|+n} / \sqrt{2 \pi(|\alpha|+n)} \times(|\alpha|+n)$! $=C_{m}(B e / C)^{|\alpha|} e^{n}(|\alpha|+n)(|\alpha|+n-1) \cdots(|\alpha|+1) / \sqrt{2 \pi(|\alpha|+n)} \times|\alpha|!<C_{A}^{|\alpha|}$ $\times|\alpha|$! holds for sufficiently large $|\alpha|$ and for a given $C_{A}>0$, this Theorem I-6 holds.

Acknowledgement. I would like to thank Prof. K. Kunugi for his stimulating conversations and encouragement.

References

[1] L. Hormander: Linear Partial Differential Operators. Springer, Berlin (1963).
[2] K. Kunugi: Sur une generalisation de l'integrale. Fundamental and Applied Aspects of Mathematics, pp. 1-30 (1959).
[3] Л. В. Овсянников: Сингулярный оператор в шкале банаховых пространств. ДАН, СССР, 163 (4), 819-822 (1965).
[4] H. Yamagata: A treatment of some function spaces used for the study of hypoellipticity. II (to appear).

