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150. On Closed Graph Theorem

By Yasujir6 NAGAKURA
Science University of Tokyo

(Comm. by Kinjir KUNUGI, M. Z.A., Nov. 13, 1972)

The closed graph theorem has been proved in some linear topologi-
cal space. In this note we show that this theorem is true in a ranked
space with some conditions. The theory of ranked space has been
investigated by K. Kunugi since 1954. Throughout this note, g, f,...
will denote points o a ranked space, U, V, neighbourhoods of the
origin with rank i, {U}, {V}, fundamental sequences o neighbour-
hoods with respect to the origin. Let a linear space E be a complete
ranked space with indicater 0, which satisfies the ollowing conditions.

(1) For any neighbourhood U, the origin belongs to U.(E, 1)
(2) The E is the neighbourhood of the origin with rank zero.
Let U be any neighbourhood of the origin, 2 be any number
with0 and g be a point in 2U. If {V,} is a undamental

(E,2)
sequence of neighbourhoods, there is an integer i0 such that
Ug+V for ]>-io.
The following conditions are the modification of Washihara’s
conditions [4].

For any {U} and {V}, there is a {W} such that
(R, LI) U+V W.

(1) For any {U,} and >0, there is a {V,} such that
U,_V,.

(E, 3) (R, L2)’ (2) For any {U,} and {,} with lim ,-0, ,>0, there is
a {V,} such that ,U,_ V,.
Let g be any point in E. For any {U,) there is a
{V,(g)}, which is a fundamental sequence of neighbour-

(R,L) hoods with respect to g, such that g+U,V,(g) and
conversely, for any {U,(g)) there is a {V,} such that
U,(g) g+ V,.

Let M be an absolutely convex set in E and V, be a neighbour-

(E, 4) hood of the origin. If /’f+ V,, there is a >0 such that
MV,.
For given distinct points g, g, there exists some neighbourhood

(E, 5)
of the origin U, such that (g + U,)v g..

1) g e . if and only if there exists some sequence {g} in M such that gg
in the sense of ranked space.
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Next, let a linear space F be a ranked space with indicater w0,

which satisfies the ollowing conditions.
(1) This is the same as (E, 1) (1).
(2) For any U and V, there is a W such that WU V.

(F, 1) (3) For any U and integer n, there is an m such that m>=n,
and a V such that VU.
(4) The F is the neighbourhood of the origin with rank zero.
The F satisfies the Washihara’s conditions (R, L), (R, L2) and

(F, 2)
(R, L), [4].
All neighbourhoods in F are absolutely convex. Moreover,
some countable union o neighbourhoods o the origin with rank
one absorbs all elements o F. In general, or ny neighbour-

(F, 3)
hood U, all elements of U are absorbed by some countable union
o neighbourhoods of the origin with rank (i / 1), whose
members are included in U.
The F is an R-complete space, that is, or any R-Cauchy se-

R
quence {g}, there is an element g such that g---g in F. (We

(F, 4) say that the sequence {g} in F is an R-Cauchy sequence, i there
exists some undamental sequence o neighbourhoods {V} such
that gg e V or ]>=i.)

(F, 5) This is the same as (E, 5).
Now, or convenience’s sake we call F type a linear ranked space

which satisfies the conditions (F, 1)(F, 5). We have already under-
stood that an R-complete ranked space has the ollowing properties"

(1) The (R) o an R-complete linear ranked space R by a con-
tinuous linear mapping is also an R-complete linear ranked space.

(2) The closed) subspace o an R-complete linear ranked space is
also an R-complete linear ranked space.

(3) The quotient space R/L, where R is an R-complete linear
ranked space and L is a closed subspace, is an R-complete linear ranked
space.

(4) The product space [I=R o R-complete linear ranked spaces

R (n-- 1, 2, .) is an R-complete linear ranked spaces.
(5) The inductive limite ot R-complete linear ranked spaces Rn

(n--1, 2,...) is an R-complete linear ranked space.
Moreover we can see easily that F type has also the properties

above (1)(5). Suppose {M} is the amily of sets in E and U is a
neighbourhood in E, then i L)7-- M U, there exists someM such that
_r includes some neighbourhood in E. Now, we can prove the ollow-
ing theorem.

Theorem. Let E, F be the above-mentioned space. And let T be

2) The set M is a closed set it M=M.



No. 9] Closed Graph Theorem 667

a closed linear operator whose domain is all of E and whose range is in
F. Then T is continuous.

Proof. Let be the countable amily o the neighbourhoods of
the origin with rank one, whose union absorbs all elements o F. Thus

Then there exist some noT-(U) and some neighbourhood V+f in E
such that

noT-l(U1) Y/f.
Next, let Y2 be the countable amily o2 the neighbourhoods o the origin
with rnk two, whose members re included in U, such that

U. U.
Then there exist some nonT-(U) and some neighbourhood V+f in E
such that

noniT-(U2) V/f2.

In general, by induction we obtain
no...n_IT-(U)DV/f, U>=U/I.

Consequently, by conditions (E, 2) and (E, 4), we can take

for all i, where {V} is a fundamental sequence of neighbourhoods with
respect to the origin and {} is the sequence such that >0 and $ O.

Now, since T is the closed linear operator, we can prove that for
all i

T-I(U)DT-I( 1 ) *21 U DtVr.
Suppose fR_f in E, that is, there exists some undamental sequence
{W} o neighbourhoods with respect to the origin such thatff e W
or all i.

By (E, 2), 2or any zV, there exists some integer N--N(i) such that

/VW to ]>=N(i). Thus, since

we have
Tfj-- Tf e U or ]>=N(i).

Hence,

Tf -->Tf in F.
Then we see that T is continuous.

We shall introduce new axiom.
(C’) Let U be any neighbourhood of the origin and {V} be any

fundamental sequence of neighbourhoods with respect to the origin.

If g e U, there exists some integer i0>=1 such that UDg+ Vr for
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Let E’ be the space E having axiom (C’) in place of (E, 2). Then
we have the ollowing.

Corollary. Let T be a closed linear operator whose domain is all
of E’ and whose range is in F. Then T is continuous.

Finally, we note down that the class o F type includes, of course,
the space ’ o L. Schwartz and the class of space E includes a non-
metrizable space. The example of space E is the xy plane, whose
base of the neighbourhood o the origin is {U} n-l, 2,... such that

U-{(x, y); x+ (y +--ln)- U{(O, 0)}.
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