## 4. A Remark on Integral Equation in a Banach Space

By Kenji Maruo and Naoki Yamada<br>(Comm. by Kôsaku Yosida, M. J. A., Jan. 12, 1973)

1. Introduction and main theorem.

The main object of this paper is to extend the result of G. Webb [1] on the solution of the integral equation associated with some nonlinear equation of evolution in a Banach space to the time dependent case.

Let $E$ be a Banach space with norm \| \|.
Let $A(t)(0 \leqq t \leqq T)$ be a linear accretive operator which satisfies the conditions of T. Kato [2], H. Tanabe [3] or T. Kato and H. Tanabe [4], and $B(t)$ be a nonlinear, accretive, everywhere defined operator such that $(t, u) \rightarrow B(t) u$ is a strongly continuous mapping from $[0, T] \times E$ to $E$ which maps bounded sets to bounded sets. It is known that there exists an evolution operator $U(t, \tau) 0 \leqq \tau \leqq t \leqq T$ with norm $\leqq 1$ to the linear equation $d u(t) / d t+A(t) u(t)=0$, and that $A(t)$ is $m$-accretive for $t \in[0, T]$.

Then we can state our main theorem.
Theorem. Under our assumption, for any $x \in E, \tau \in[0, T[$, there exists a unique solution $u(t, \tau ; x)$ to the integral equation

$$
\begin{equation*}
u(t, \tau ; x)=U(t, \tau) x-\int_{\tau}^{t} U(t, s) B(s) u(s, \tau ; x) d s \tag{E}
\end{equation*}
$$

on $[\tau, T]$. If we define $W(t, \tau) x=u(t, \tau ; x)$, then $W(t, \tau)$ has the following evolution properties and an inequality,
(1) $W(t, \tau)=W\left(t, t^{\prime}\right) W\left(t^{\prime}, \tau\right), \quad W(t, t)=I \quad$ for $0 \leqq \tau \leqq t^{\prime} \leqq t \leqq T$
(2) $\quad W(t, \tau) x$ is strongly continuous in $0 \leqq \tau \leqq t \leqq T$
$\|W(t, \tau) x-W(t, \tau) y\| \leqq\|x-y\|$
The authors wish to thank Professor H. Tanabe for his advices.

## 2. Proof of the theorem.

The main idea of the proof is due to G. Webb [1].
Proposition 1. For any $x \in E, \tau \in\left[0, T\left[\right.\right.$, there exists $T_{0}\left(\tau<T_{0} \leqq T\right)$ and $a$ continuous function $u(t, \tau ; x):\left[\tau, T_{0}\right] \rightarrow E$ such that $u(t, \tau ; x)$ is a solution of $(E)$ on $\left[\tau, T_{0}\right]$.

Proof. Let $x \in E, \tau \in[0, T[$ be fixed. In view of the continuity of $B(t) x$, for any $\varepsilon>0$ there exists a positive number $\delta$ depending on $x, \tau, \varepsilon$, such that for any $v \in V=\{v:\|x-v\|<\delta\}$ and any $t,|t-\tau|<\delta$ the inequality $\|B(t) v-B(\tau) x\| \leqq \varepsilon$ hold. Take $M=\|B(\tau) x\|+\varepsilon$ then $\|B(t) v\| \leqq M$ for any $v \in V$ and $t,|t-\tau|<\delta$. Under the assumptions of [2] or [3] we
take the sequence $x_{n} \in D(A(t))$ such that $x_{n}$ converges to $x$, and in case of [4] we put $x_{n}=x$. We write $v=U(t, \tau) x_{n}+\omega$. Then we can choose $T_{1}>\tau$ and a large positive integer $N$ such that $v$ are points in $V$ for any integer $n \geqq N$, any number $t ; \tau \leqq t \leqq T_{1}$ and any point $\omega \in E ;\|\omega\|$ $\leqq\left(T_{1}-\tau\right) M$. Let $T_{0}=\operatorname{Min}\left\{T_{1}, \tau+\delta\right\}$. For any positive integer $n \geqq N$, let $t_{0}^{n}=\tau, u_{n}\left(t_{0}^{n}\right)=x_{n}$. Inductively, for each positive integer $i$, define $\delta_{i}^{n}, t_{i}^{n}$, and $u_{n}\left(t_{i-1}^{n}\right)$ such that
(i) $0 \leqq \delta_{i}^{n}, t_{i-1}^{n}+\delta_{i}^{n} \leqq T_{0}$
(ii) if $\left\|z-u_{n}\left(t_{i-1}^{n}\right)\right\| \leqq \delta_{i}^{n} M+\operatorname{Max}_{t_{i-1}^{n} \leq t \leq t_{i-1+\delta_{i}^{n}}^{n}\left\|\left[U\left(t, t_{i-1}^{n}\right)-I\right] u_{n}\left(t_{i-1}^{n}\right)\right\|}$
 number such that (i) and (ii) hold.
Define $t_{i}^{n}=t_{i-1}^{n}+\delta_{i}^{n}$ and for each $t \in\left[t_{i-1}^{n}, t_{i}^{n}\right]$ define

$$
\begin{equation*}
u_{n}(t)=U\left(t, t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)-\int_{t_{i-1}^{n}}^{t} U(t, s) B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right) d s \tag{2.1}
\end{equation*}
$$

It is easy to see that for $t \in\left[t_{k-1}^{n}, t_{k}^{n}\right]$

$$
\begin{array}{r}
u_{n}(t)=U(t, \tau) x_{n}-\sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} U(t, s) B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right) d s  \tag{2.2}\\
-\int_{t_{k-1}^{n}}^{t} U(t, s) B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right) d s .
\end{array}
$$

By the same argument as G. Webb [1], we see that $u_{n}(t) \in V \cap D(A(t))$ and

$$
\begin{equation*}
\operatorname{Sup}_{t_{i-1}^{n} \leqq t \leq t_{i}^{n}}\left\|B(t) u_{n}(t)-B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)\right\| \leqq 1 / n \tag{2.3}
\end{equation*}
$$

by the estimate of $\left\|u_{n}(t)-u_{n}\left(t_{i-1}^{n}\right)\right\|$ and (2.1).
If $t \in] t_{i-1}^{n}, t_{i}^{n}\left[, u_{n}(t)\right.$ is differentiable at $t$ and

$$
\begin{equation*}
u_{n}^{\prime}(t)=-\left(A(t) u_{n}(t)+B\left(t_{i-1}^{n}\right) u_{n}\left(t_{i-1}^{n}\right)\right) . \tag{2.4}
\end{equation*}
$$

We will show that there exists some positive integer $L$ such that $t_{L}^{n}=T_{0}$. Assume that $t_{i}^{n}<T_{0}$ for all $i$. Following the same method as [1] we see that $\lim _{i \rightarrow \infty} u_{n}\left(t_{i}^{n}\right)$ exists. Let $z_{0}=\lim _{i \rightarrow \infty} u_{n}\left(t_{i}^{n}\right)$ and $t_{0}=\lim _{i \rightarrow \infty} t_{i}^{n}$. Choose $\alpha>0$ and $\beta_{0}>0$ such that if $\left\|z-z_{0}\right\|<\alpha,\left|t-t_{0}\right|<\beta_{0}$ then $\| B(t) z$ $-B\left(t_{0}\right) z_{0} \|<1 / 4 n$. Noting that $\left\{u_{n}\left(t_{i}^{n}\right)\right\}_{i=1}^{\infty}$ is compact there exists $\beta_{1}>0$ such that if $t_{i-1}^{n} \leqq t \leqq t_{i-1}^{n}+\beta_{1}$, then $\left\|\left[U\left(t, t_{i-1}^{n}\right)-I\right] u_{n}\left(t_{i-1}^{n}\right)\right\|<\alpha / 4$ for all $i$. Let $\beta=\operatorname{Min}\left\{\beta_{0}, \beta_{1}\right\}$ and choose $k$ so large that

$$
\delta_{k}^{n}<\alpha / 4 M, \delta_{k}^{n}<\beta, \quad\left\|u_{n}\left(t_{k-1}^{n}\right)-z_{0}\right\|<\alpha / 4 \quad \text { and } \quad t_{0}-\beta<t_{k-1}^{n} .
$$

If

$$
\left\|z-u_{n}\left(t_{k-1}^{n}\right)\right\| \leqq \delta_{k}^{n} M+\operatorname{Max}_{t_{k-1}^{n} \leq t \leq t_{k}^{n}}\left\|\left[U\left(t, t_{k-1}^{n}\right)-I\right] u_{n}\left(t_{k-1}^{n}\right)\right\|+\alpha / 4
$$

then arguing as in Webb [1] we know

$$
\begin{aligned}
& \left\|B(t) z-B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right)\right\| \\
& \quad \leqq\left\|B(t) z-B\left(t_{0}\right) z_{0}\right\|+\left\|B\left(t_{0}\right) z_{0}-B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right)\right\| \leqq 1 / 2 n .
\end{aligned}
$$

This contradicts the definition of $\delta_{k}^{n}$, so there exists some integer $L$ such that $t_{L}^{n}=T_{0}$. Next we will show that continuous function $u_{n}(t)$ converges uniformly on $\left[\tau, T_{0}\right]$. Define $P_{n, m}(t)=\left\|u_{n}(t)-u_{m}(t)\right\|$ and let $t \in] \tau, T_{0}[$ be such that $t \in] t_{j-1}^{m}, t_{j}^{m}[$ and $t \in] t_{k-1}^{n}, t_{k}^{n}[$ for some integer $j, k$. In view of (2.3) and (2.4)

$$
\begin{aligned}
P_{n}^{-\prime}{ }_{, m}(t) \leqq & \lim _{h \uparrow 0} 1 / h\left\{\| u_{n}(t)-u_{m}(t)-h\left[(A(t)+B(t)) u_{n}(t)\right.\right. \\
& \left.\left.\quad-(A(t)+B(t)) u_{m}(t)\right]\|-\| u_{n}(t)-u_{m}(t) \|\right\} \\
& \quad+\left\|B(t) u_{n}(t)-B\left(t_{k-1}^{n}\right) u_{n}\left(t_{k-1}^{n}\right)\right\|+\left\|B(t) u_{m}(t)-B\left(t_{j-1}^{m}\right) u_{m}\left(t_{j-1}^{m}\right)\right\| \\
\leqq & 1 / n+1 / m
\end{aligned}
$$

Here we used the accretiveness of $A(t)+B(t)$. Hence we have

$$
P_{n, m}(t) \leqq\left\|x_{n}-x_{m}\right\|+\left(T_{0}-\tau\right)(1 / n+1 / m)
$$

and so $u_{n}(t)$ converges uniformly to a continuous function $u(t, \tau ; x)$. From (2.3) and noting that $B(s) u_{n}(s)$ converges to $B(s) u(s, \tau ; x)$ for each $s$ as $n \rightarrow \infty$ and $\left\|B(s) u_{n}(s)\right\| \leqq M$ for $s \in\left[\tau, T_{0}\right]$, using Lebesgue's theorem, we see that $u(t, \tau ; x)$ satisfies the equation $(E)$ on $\left[\tau, T_{0}\right]$.

Proposition 2. Let $u(t, \tau ; x)$ and $v(t, \tau ; y)$ be the solutions of $(E)$ on $\left[\tau, T_{1}\right]$ and $\left[\tau, T_{2}\right]$ for any $x, y \in E$, respectively. Then we find

$$
\begin{equation*}
\|u(t, \tau ; x)-v(t, \tau ; y)\| \leqq\|x-y\| \tag{2.5}
\end{equation*}
$$

for any $t ; \tau \leqq t \leqq \min \left\{T_{1}, T_{2}\right\}$. Consequently the solution of $(E)$ is unique and satisfies the relation

$$
\begin{equation*}
u(t, \tau ; x)=u\left(t, t^{\prime} ; u\left(t^{\prime}, \tau ; x\right)\right) \tag{2.6}
\end{equation*}
$$

for $t$ and $t^{\prime} ; \tau \leqq t^{\prime} \leqq t \leqq T_{1}$.
Proof. Take sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ as in the proof of Proposition 1. Let $\left\{t_{i}^{n}\right\}_{i=0}^{n}$ be a partition of $\left[\tau, \min \left\{T_{1}, T_{2}\right\}\right]$ for each $n$. Define for $t \in\left[t_{k-}^{n}, t_{k}^{n}\right]$

$$
\begin{array}{r}
u_{n}(t ; x)=U(t, \tau) x_{n}-\sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}} U(t, s) B\left(t_{i-1}^{n}\right) u\left(t_{i-1}^{n}, \tau ; x\right) d s \\
-\int_{t_{k-1}^{n}}^{t} U(t, s) B\left(t_{k-1}^{n}\right) u\left(t_{k-1}^{n}, \tau ; x\right) d s
\end{array}
$$

and $v_{n}(t, y)$ similarly. It is easy to see that $u_{n}(t ; x)$ and $v_{n}(t ; y)$ are differentiable for $t \in] t_{k-1}^{n}, t_{k}^{n}[$ and

$$
u_{n}^{\prime}(t ; x)=-\left(A(t) u_{n}(t ; x)+B\left(t_{k-1}^{n}\right) u\left(t_{k-1}^{n}, \tau ; x\right)\right)
$$

and similarly for $v_{n}(t ; y)$. Furthermore $u_{n}(t ; x)$ and $v_{n}(t ; y)$ converge uniformly to $u(t, \tau ; x)$ and $v(t, \tau ; y)$ respectively as the mesh of $\left\{t_{i}^{n}\right\}$ goes to zero with $n$. Let $P_{n}(t)=\left\|u_{n}(t ; x)-v_{n}(t ; y)\right\|$. By the same argument as in Proposition 1, we obtain

$$
\begin{align*}
P_{n}^{-\prime}(t) \leqq & \left\|B(t) u_{n}(t ; x)-B\left(t_{k-1}^{n}\right) u\left(t_{k-1}^{n}, \tau ; x\right)\right\|  \tag{2.7}\\
& +\left\|B(t) v_{n}(t ; y)-B\left(t_{k-1}^{n}\right) v\left(t_{k-1}^{n}, \tau ; y\right)\right\| .
\end{align*}
$$

Using Lebesgue's theorem we obtain

$$
\lim _{n \rightarrow \infty} P_{n}(t) \leqq\|x-y\| .
$$

Hence the uniqueness of the solution follows at once. On the other hand we know (2.6) from the uniqueness of the solution.

Proposition 3. For any $x \in E, \tau \in[0, T[$ the solution $u(t, \tau ; x)$ of (E) exists on $[\tau, T]$.

Proof. Assume that $u(t, \tau ; x)$ exists on $\left[\tau, T_{0}\left[\right.\right.$ for some $T_{0} \leqq T$. First we will show that

$$
\operatorname{Sup}_{\tau \leqq t \leq T_{0}}\|u(t, \tau ; x)\| \leqq C
$$

where $C$ is a constant which depends only $T, B$ and $x$. Let $T^{\prime}$ be fixed such that $\tau<T^{\prime}<T_{0}$. On $\left[\tau, T^{\prime}\right]$ we define the approximating function $u_{n}(t ; x)$ as in the proof of Proposition 2 and define $P_{n}(t)=\left\|u_{n}(t ; x)\right\|$. Then we find

$$
P_{n}^{-1}(t) \leqq\|B(t) 0\|+\left\|B(t) u_{n}(t ; x)-B\left(t_{k-1}^{n}\right) u\left(t_{k-1}^{n}, \tau ; x\right)\right\|
$$

as Proposition 2 and so for $t \in\left[t_{k-1}^{n}, t_{k}^{n}\right]$

$$
\begin{aligned}
P_{n}(t) \leqq & \left\|x_{n}\right\|+\int_{\tau}^{t}\|B(s) 0\| d s \\
& +\sum_{i=1}^{k-1} \int_{t_{i-1}^{n}}^{t_{i}^{n}}\left\|B(s) u_{n}(s ; x)-B\left(t_{i-1}^{n}\right) u\left(t_{i-1}^{n}, \tau ; x\right)\right\| d s \\
& +\int_{t_{k-1}^{n}}^{t}\left\|B(s) u_{n}(s ; x)-B\left(t_{k-1}^{n}\right) u\left(t_{k-1}^{n}, \tau ; x\right)\right\| d s .
\end{aligned}
$$

The third and fourth terms tend to zero as the mesh goes to zero with $n \rightarrow \infty$, and hence we obtain

$$
\|u(t, \tau ; x)\| \leqq\|x\|+\int_{0}^{T}\|B(s) 0\| d s
$$

on [ $\tau, T^{\prime}$ ], but the right hand side is independent of $T^{\prime}$. So we obtain the boundedness of $u(t, \tau ; x)$ on $\left[\tau, T_{0}\left[\right.\right.$. Let $h, h^{\prime}>0, h-h^{\prime} \geqq 0, T_{0}-h$ $\geqq \tau$ and let us estimate $\left\|u\left(T_{0}-h, \tau ; x\right)-u\left(T_{0}-h^{\prime}, \tau ; x\right)\right\|$. Using the assumption on $B(t)$ and the boundedness of $u(t, \tau ; x)$ just shown, we see that $\lim _{t+T_{0}} u(t, \tau ; x)$ exists and so $u(t, \tau ; x)$ can be continued past $T_{0}$.

Proposition 4. Define $W(t, \tau) x=u(t, \tau ; x)$, then $W(t, \tau) x$ satisfies the properties stated in the theorem.

Proof. It remains only to prove the continuity of $W(t, \tau)$. Let $\tau \leqq \tau^{\prime} \leqq t$ then from (2.5), (2.6)

$$
\left\|u(t, \tau ; x)-u\left(t, \tau^{\prime} ; x\right)\right\| \leqq\left\|u\left(\tau^{\prime}, \tau ; x\right)-x\right\| .
$$

Hence $u(t, \tau ; x)$ is continuous in $\tau$ and $t: 0 \leqq \tau \leqq t \leqq T$. So the theorem is proved.

## References

[1] Webb, G.: Continuous nonlinear perturbations of linear accretive optrators in Banach spaces. J. Funct. Anal., 10, 191-203 (1972).
[2] Kato, T.: Integration of the equation of evolution in a Banach space. J. Math. Soc. Japan, 5, 208-234 (1953).
[3] Tanabe, H.: On the equations of evolution in a Banach space. Osaka Math. J., 12, 363-376 (1960).
[4] Kato, T., and Tanabe, H.: On the abstract evolution equation. Osaka Math. J., 14, 107-133 (1962).

