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A Remark on Integral Equation in a Banach Space

By Kenji MARU0 and Naoki YAMADA

(Comm. by KSsaku YOSIDA, M..1. A., Jan. 12, 1973)

1. Introduction and main theorem.
The main object of this paper is to extend the result of G. Webb

[1] on the solution of the integral equation associated with some non-
linear equation of evolution in a Banach space to the time dependent
case.

Let E be a Banach space with norm
Let A(t) (0<= t <= T) be a linear accretive operator which satisfies the

conditions of T. Kato [2], H. Tanabe [3] or T. Kato and H. Tanabe [4],
and B(t) be a nonlinear, accretive, everywhere defined operator such
that (t, u)--.B(t)u is a strongly continuous mapping from [0, T] E to E
which maps bounded sets to bounded sets. It is known that there
exists an evolution operator U(t, ) 0<__ <_ t<= T with norm <= 1 to the
linear equation du(t)/dt+A(t)u(t)-O, and that A(t) is m-accretive for
t e [0, T].

Then we can state our main theorem.

Theorem. Under our assumption, for any x e E, r e [0, T[, there
exists a unique solution u(t, ; x) to the integral equation

(E) u(t, r x)- U(t, r)x-.[U(t, s)B(s)u(s, r x)ds

on [r, T]. If we define W(t, r)x-u(t, x), then W(t, r) has the follow-
ing evolution properties and an inequality,

(1) W(t, r)-W(t, t’) W(t’, r), W(t, t)=I for
( 2 ) W(t, r)x is strongly continuous in 0<_ r<__ t <= T
( 3 W(t, r)x-- W(t, r)y <= x- y

The authors wish to thank Professor H. Tanabe for his advices.

2. Proof of the theorem.
The main idea of the proof is due to G. Webb [1].

Proposition 1. For any x e E, r e [0, T[, there exists To(r< To<= T)
and a continuous function u(t, r; x)" [r, To]-E such that u(t, r;x) is a
solution of (E) on [r, To].

Proof. Let x e E, r e [0, T[ be fixed. In view of the continuity of
B(t)x, for any,> 0 there exists a positive number
such that for any v e V-- {v" x-- v 3} and any t, t-- r I< the inequali-
ty IIB(t)v--B(r)xll<= hold. Take M--IIB(r)xll+ then IIB(t)vll<_M for
any v e V and t, lt-r[. Under the assumptions of [2] or [3] we
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take the sequence Xn e D(A(t)) such that Xn converges to x, and in case
o [4] we put x--x. We write v-U(t, r)Xn +o. Then we can choose
T)r and a large positive integer N such that v are points in V or
any integer n>=N, any number t; r<=t<T and any point weE;
g(TI--r)M. Let T0--Min {T,r+}. For any positive integer nN,
let t--r,u(t)--x. Inductively, or each positive integer i, define, t, and u(t_) such that

(i) 0<, t_+ < T0
(ii) if ]z--un(t_)llM+Maxt_,gtgt_,+l [U(t, tL)-I]u(tL)[l

then Supt_,gtzt_+llB(t)z-B(t_)u(t_)lll/n and 3 is the largest

number such that (i) and (ii) hold.
Define t t_+ and or each t e [t_, t define

(.1) (t)- U(t, t)(t)- U(t, )B(tr_)(tr_)g.

It is easy to see that for t e [t_,

(.) At)= U(t, )-- f; U(t,

U(t, )B(t_)(t_)d.

By the same argument as G. Webb [1], we see that (t) V D(A(t))
and
(2.3) Supt_stt B(t)u(t) B(tL)Un(tL) 1/n
by the estimate of]un(t)--u(tL)]and (2.1).
I t e ]t, t[, u(t) is differentiable at t and
(2.4) u(t)-- --(A(t)u(t) +B(t_)Un(tL)).
We will show that there exists some positive integer L such that

t--T0. Assume that t T0 or all i. Following the same method as

[1] we see that lim_u(t) exists. Let z0--limu(t) and t0--lim t.
Choose a0 and 0>0 such that if Z--Zola, t--to]flo then ]B(t)z
--B(to)Zo]l/4n. Noting that {u(t)}7= is compact there exists

such that i tLttL+fl, then [][U(t, t)-I]u(t_)] a/4 or all i.

Let --Min {0, } and choose k so large that
a/4M,, u(t_)-Zoa/4 and to-flt_.

z--u($_)]]M+Maxt_ [U(t, t_)-I]u(t_) +a/4
then arguing as in Webb [1] we know

UB(t)z--B(t_) (t_)
B(t)z-- B(to)Zo + B(to)Zo-- B(t_)Un(t_)I 1/2n.

This contradicts the definition of 3, so there exists some integer L
such that t T0. Next we will show that continuous unction u(t)L

converges uniformly on [r, T0]. Define P,(t)-tu(t)--u(t)[ and let

t e It, T0[ be such that t e ]tL, t[ and $ e ]t_, t[ or some integer ],
In view o (2.3) and (2.4)
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P-’.,(t) __< lim 1/h{llu(t)--u(t) h[(A(t) + B(t))Un(t)
0

-(A(t) +B(t))u(t)] II--Ilu(t) --u(t)

<__l/n+l/m.
Here we used the accretiveness of A(t)+B(t). Hence we have

P,(t) __< Xn X +(To-- r)(1/n+ 1/m)
and s Un(t) converges uniformly to a continuous unction u(t, r;x).
From (2.3) and noting that B(8)Un(8) converges to B(s)u(s, ; x) for each
s as n--. and IIB(s)u(s)ll<=Mr s e [r, To], using Lebesgue’s theorem,
we see that u(t, r; x) satisfies the equation (E) on [r, To].

Proposition 2. Let u(t, r;x) and v(t, ; y) be the solutions of (E)
on [, T1] and [, T] for any x, y e E, respectively. Then we find
(2.5) Ilu(t, r; x)--v(t, v;
for any t; rt_<_min {T1, T2}. Consequently the solution of (E) is unique
and satisfies the relation
(2.6) u(t, r; x)--u(t, t’ u(t’, r; x))
for t and t’ <= t’< t <= T.

Proof. Take sequences {Xn}-_ and {Yn}=I aS in the proof of Proposi-
tion 1. Let {t}\0 be a partition of [r, min {T, T}] or each n. Define
for t e [t_, t]

u(t x)-- U(t, r)Xn_" [t? V(t s)B(t,\)u(t,\, r x)ds
= Jt_z

--| U(t, s)B(t_l)u(t_, r
t

and Vn(t, y) similarly. It is easy to see that Un(t; x) and v(t; y) are
differentiable for t e ]t_l, t[ and

u’(t x)- -(A(t)u(t x)+B(t_)u(t_, r; x))
and similarly for v(t y). Furthermore Un(t; X) and v(t y) converge
uniformly to u(t, r;x) and v(t, r;y) respectively as the mesh of
goes to zero with n. Let P(t)--Ilu(t; x)--v(t; Y)II. By the same
argument as in Proposition 1, we obtain

(2.7) P;’(t)GllB(t)u(t x)--B(t_)u(t_,
+ B(t)Vn(t y) B(t_)v(t_, r y)

Using Lebesgue’s theorem we obtain
lim

Hence the uniqueness of the solution follows at once. On the other
hand we know (2.6) from the uniqueness of the solution.

Proposition 3. For any x e E, e [0, T[ the solution u(t, x) of
(E) exists on [r, T].

Proof. Assume that u(t,r;x) exists on [r, To[ for some To<=T.
First we will show that

Sup u(t, r x)II C
_t_To
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where C is a constant which depends only T, B and x. Let T’ be fixed
such that rTTo. On [r, T’] we define the approximating function
u(t;x) as in the proof of Proposition 2 and define P(t)--Ilu(t;x)ll.
Then we find

P;’(t) < B(t)O + [1B(t)u(t x) B(t_)u(tL, x)l
as Proposition 2 and so or t e [t_, t]

P(t) x +.[ B(s)O ds- [+ P
B(s)u(s; x)--B(t)u(t,; x)ds

+ B()( ) B(t_)(t_, )II d.

The third and fourth terms tend to zero as the mesh goes to ero with, and hence we obtain

u(t, v ;x)I1 xll+[’llB(s)Ollds
on Iv, T’], but the right hand side is independent of T’. So we obtain
the boundedness of u(t, v; x) on Iv, T0[. Let h,E>O, h--h’O, To--h
v and let us estimate llu(To-h,v; x)-u(To--h’,v; x)ll. Using the
assumption on B(t) and the boundedness of u(t, v;x) just shown, we
see that limtrr0 u(t, v; x) exists and so u(t, v; x) can be continued past
T0.

Proposition 4. Define W(t, r)x-u(t, r; x), then W(t, v)x satisfies
the properties stated in the theorem.

Proof. It remains only to prove the eontinuity of W(t, v). Let
v v’ t then from (2.5), (2.6)

Hence u(t, r; x) is continuous in r and t" 0grg tg T. So the theorem
is proved.
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