2. On the Relative Pseudo-Rigidity

By Kazuhiko MAKIO

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Jan. 12, 1973)

In this paper we establish a generalization of the results in [1].

In what follows, by a *pair* (W, S) we mean the pair of a complex manifold W and a compact submanifold S of W. By a *deformation* of a pair (W, S) we mean the quintuple $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ of connected complex manifolds \mathcal{W}, B , a closed submanifold S of \mathcal{W} , a point o of B and a smooth holomorphic map π of \mathcal{W} onto B such that $\pi^{-1}(o) = W, \pi^{-1}(o) \cap S = S$ and the restriction of π to S is a proper smooth holomorphic map.

For convenience sake we list here some notations whose meanings are the same wherever they occur. Let $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ be a deformation of a pair (W, S).

$$\begin{split} &m = \dim B \\ &(t_1, \cdots, t_m) = \text{a local coordinate of } B \text{ with center } o \\ &B(\varepsilon) = \{(t_1, \cdots, t_m) \in B ; |t_i| < \varepsilon, i = 1, \cdots, m\} \\ &\mathcal{W}(\varepsilon) = \pi^{-1}(B(\varepsilon)) \\ &\mathcal{W}|_U = \pi^{-1}(U), \ U \subset B \\ &S = \text{the sheaf over } W \text{ of germs of holomorphic vector fields which} \end{split}$$

are tangential to S at each point of S. \tilde{Z} = the sheaf over \mathcal{W} of germs of holomorphic vector fields along

fibres which are tangential to S at each point of S.

We say that a deformation $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ of a pair (W, S) is relatively trivial if there exists a biholomorphic map g of \mathcal{W} onto $W \times B$ which induces a biholomorphic map of \mathcal{S} onto $S \times B$ such that g | W is the identity map and $pr_B \circ g = \pi$ where pr_B is the canonical projection of $W \times B$ onto B.

Definition 1. A deformation $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ of a pair (\mathcal{W}, S) is said to be *relatively pseudo-trivial at o* if, for any relative compact subset Nof \mathcal{W} , there exist a positive number ε and a submanifold \mathcal{N} of $\mathcal{W}(\varepsilon)$ such that $(\mathcal{N}, \mathcal{N} \cap \mathcal{S}, B(\varepsilon), o, \pi | \mathcal{N})$ is a relative trivial deformation of the pair $(N, N \cap S)$.

Definition 2. A pair (W, S) is said to be *relatively pseudo-rigid* if any deformation of (W, S) is relatively pseudo-trivial at o.

Lemma. Let $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ be a deformation of a pair (W, S). If the stalk $(R^1\pi_*\tilde{\Xi})_o=0$, then $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ is relatively pseudo-trivial at o.

The proof of this lemma goes parallel with that of "Theorem 5.1" in [3] or "Proposition 1" in [1], so we omit it.

The following theorem generalizes the "Theorem" in [1].

Theorem. Let V be a complex manifold, W be an open relative compact submanifold of V and S be a compact submanifold of W.

If W is the strongly pseudo-convex manifold in the sense of [2] and $H^{1}(W, \Xi) = 0$, then (W, S) is relatively pseudo-rigid.

Proof. We begin with quoting a result obtained in [4].

Definition ([4], [5]). Let \mathcal{W}' and B' be complex manifolds. A holomorphic map π of \mathcal{W}' onto B' is called 1-convex map if, for $\forall_t \in B'$, there exist an open neighborhood U_t of t in B', a function φ of $\mathcal{W}'|_{U_t}$ into \mathbf{R} and a constant $c_0 \in \mathbf{R}$ such that:

(i) the restriction of φ to $\{p \in \mathcal{W}'|_{U_t}; \varphi(p) > c_0\}$ is a strongly plurisubharmonic function (cf. [2] §1, Definition 1).

(ii) the restriction of φ to $\{p \in \mathcal{W}'|_{U_t}; \varphi(p) \leq c\}$ is a proper map for all $c \in \mathbf{R}$,

where φ is called the "Exhaustions function" of $\pi|_{\pi^{-1}(U_t)}$ and c_0 is called the "Ausnahmekonstante".

Now let $\mathcal{W}'_c = \{ p \in \mathcal{W}'; \varphi(p) < c \}$ and $\pi_c = \pi | \mathcal{W}'_c$.

Theorem ([4]). Let $\pi: \mathcal{W}' \to B'$ be a 1-convex map, \mathcal{F} be a coherent sheaf over \mathcal{W}' and other symbols be as above.

If cohomology classes $\xi_1, \xi_2, \dots, \xi_l$ of $H^1(\mathcal{W}'_c(\varepsilon), \mathfrak{F})$ generate the image of the canonical map of $R^1(\pi_c)_* \mathfrak{F}$ to $R^1(\pi_c)_*(\mathfrak{F}/\sum_{i=1}^m t_i^{\nu_i}\mathfrak{F})$ for all sufficiently large $(\nu_1, \nu_2, \dots, \nu_m) \in N^m$, then they already generate the stalk $(R^1(\pi_c)_*\mathfrak{F})_o$.

Now let $(\mathcal{W}, \mathcal{S}, B, o, \pi)$ be any deformation of (W, S) and N be any relative compact subset of W. By the hypothesis that W is a strongly pseudo-convex submanifold of V, there exist a neighborhood U of W in V, a pluri-subharmonic function $\varphi_0: U \to \mathbf{R}$ and a positive constant δ_0 such that $W = \{p \in U; \varphi_0(p) < 0\}$ and the restriction of φ_0 to $\{p \in U; -\delta_0 < \varphi_0(p)\}$ is strongly pluri-subharmonic.

Let ε and δ be positive numbers which satisfy the following conditions:

i) $\delta < \delta_0$

ii) $N \cup S \subset U_{\delta} = \{p \in U; \varphi_0(p) < -\delta\}$

iii) there exists a complex submanifold \mathcal{U}_{δ} of \mathcal{W} such that $(\mathcal{U}_{\delta}, \mathcal{S}(\varepsilon), B(\varepsilon), o, \pi)$ is a deformations of (U_{δ}, S) where $U_{\delta} = \pi^{-1}(o) \cap \mathcal{U}_{\delta}$ and is relatively differentiably trivial, that is, there exists a diffeomorphism f of \mathcal{U}_{δ} onto $U_{\delta} \times B(\varepsilon)$ which induces a diffeomorphism of $\mathcal{S}(\varepsilon)$ onto $S \times B(\varepsilon)$ such that $f|_{U_{\delta}}$ is the identity map and $pr_{B(\varepsilon)} \circ f = \pi$ where $pr_{B(\varepsilon)}$ is the canonical projection of $U_{\delta} \times B(\varepsilon)$ onto $B(\varepsilon)$.

Let a and b be negative numbers such that

i) $-\delta_0 < b < a < -\delta$

ii)
$$K = \{p \in U; b \leq \varphi_0(p) \leq a\} \subset U_{\delta} - S$$

iii) $S \cup N \subset \{p \in U; \varphi_0(p) < a\}$

Let $\hat{\varphi}(p) = \varphi_0(pr_{U_\delta} \circ f(p))$ for all $p \in U_\delta$ where pr_{U_δ} is the canonical projection of $U_\delta \times B(\varepsilon)$ onto U_δ , and let $\hat{\varphi} = \hat{\varphi} + M \circ \pi^*(\sum_{\lambda=1}^m t_\lambda \bar{t}_\lambda)$ on U_δ . As K is compact, for sufficiently large number $M, \hat{\varphi}$ is strongly pluri-sub-harmonic on K. Then there exists an open neighborhood U of K in U_δ where $\hat{\varphi}$ is strongly pluri-subharmonic.

Let ε' be a sufficiently small number such that $\{p \in U_s; b \leq \hat{\varphi}(p) \leq a\}$ $\cap \mathcal{W}(\varepsilon') \subset \mathcal{U} \cap \mathcal{W}(\varepsilon')$ and $\mathcal{S}(\varepsilon') \subset \{p \in U_s; \hat{\varphi}(p) < a\}.$

Let $\mathcal{W}' = \{p \in \mathcal{U}_{\delta}; \hat{\varphi}(p) < a\} \cap \mathcal{W}(\varepsilon')$, then $\pi: \mathcal{W}' \to B' = B(\varepsilon')$ is a 1-convex map whose "Exhaustions function" is $-\log(a - \hat{\varphi})$ and whose "Ausnahmekonstante" is $-\log(a - b)$.

Now, taking a negative constant c' such that b < c' < a and $N \subset \{p \in U_{\delta}; \varphi_0(p) < c'\}$, let $c = -\log(a - c')$. To complete the proof, it is sufficient to prove $R(\pi_c)_*(\tilde{Z}/\sum_{i=1}^m t_i^{v_i}\tilde{Z}) = 0$ for all $(\nu_1, \dots, \nu_m) \in N^m$. Because, if so, $(R(\pi_c)_*\tilde{Z})_o = 0$ by the theorem quoted above and then, by the lemma, $(\mathcal{W}'_c, \mathcal{S}(\epsilon'), B(\epsilon'), o, \pi)$ is relatively pseudo-trivial at o.

Note that $\pi^{-1}(o) \cap \mathcal{W}'_c = \{p \in W ; \varphi_0(p) < c'\}$ and $H^1(\pi^{-1}(o) \cap \mathcal{W}'_c, \mathcal{Z})$ $\cong H^1(W, \mathcal{Z}).$ But $R^1(\pi_c)_*(\tilde{\mathcal{Z}}/\sum_{i=1}^m t_i \tilde{\mathcal{Z}}) = H^1(\pi^{-1}(o) \cap \mathcal{W}'_c, \mathcal{Z})$, therefore $R^1(\pi_c)_*(\tilde{\mathcal{Z}}/\sum_{i=1}^m t_i \tilde{\mathcal{Z}}) = 0.$

We shall prove $R^{i}(\pi_{c})_{*}(\tilde{\mathbb{Z}}/\sum_{i=1}^{m}t_{i}^{*i}\tilde{\mathbb{Z}})=0$ under the condition $R^{i}(\pi_{c})_{*}(\tilde{\mathbb{Z}}/\sum_{i=1}^{m}t_{i}\tilde{\mathbb{Z}})=0$ by the induction with respect to $m=\dim B$ and $(\nu_{1}, \dots, \nu_{m}) \in N^{m}$ which is ordered in such a way that $(\nu_{1}, \dots, \nu_{m}) < (\nu'_{1}, \dots, \nu'_{m}) \Leftrightarrow \nu_{1} = \nu'_{1}, \dots, \nu_{k} = \nu'_{k}, \nu_{k+1} < \nu'_{k+1}.$

Let m=1 and suppose $R^{i}(\pi_{c})_{*}(\tilde{Z}/t^{*}\tilde{Z})=0$. We have the isomorphism $t^{*}\tilde{Z}/t^{*+1}\tilde{Z}\cong\tilde{Z}/t\tilde{Z}$

and the exact sequence

$$0 {\rightarrow} t^{\nu} \tilde{Z} / t^{\nu+1} \tilde{Z} {\rightarrow} \tilde{Z} / t^{\nu+1} \tilde{Z} {\rightarrow} \tilde{Z} / t^{\nu} \tilde{Z} {\rightarrow} 0.$$

Consequently we obtain $R^{1}(\pi_{c})_{*}(\tilde{\Xi}/t^{\nu+1}\tilde{\Xi})=0.$

Now let $m \ge 2$ and suppose our assertion is true if dim $\le m - 1$ and moreover

$$R^{1}(\pi_{c})_{*}\left(\tilde{\mathcal{Z}}/\sum_{i=1}^{m-1}t_{i}^{\nu_{i}}\tilde{\mathcal{Z}}+t_{m}^{\nu_{m}-1}\tilde{\mathcal{Z}}\right)=0.$$

Let $\tilde{\mathcal{Z}}_1$ = the restriction of $\tilde{\mathcal{Z}}$ to $\pi^{-1}\{(t_1, \dots, t_m); t_m = 0\}$, then we have the isomorphism

$$\sum_{i=1}^{m-1} t_i^{\nu_i} \widetilde{\mathcal{Z}} + t_m^{\nu_m-1} \widetilde{\mathcal{Z}} / \sum_{i=1}^m t_i^{\nu_i} \widetilde{\mathcal{Z}} \cong \widetilde{\mathcal{Z}}_1 / \sum_{i=1}^{m-1} t_i^{\nu_i} \widetilde{\mathcal{Z}}_1.$$

By the hypothesis of the induction we obtain

$$R^{1}(\pi_{c})_{*}\left(\sum_{i=1}^{m-1}t_{i}^{\nu_{i}}\tilde{\mathcal{Z}}+t_{m}^{\nu_{m}-1}\tilde{\mathcal{Z}}/\sum_{i=1}^{m}t_{i}^{\nu_{i}}\tilde{\mathcal{Z}}\right)=0,$$

then the exact sequence

8

No. 1]

$$0 \rightarrow \sum_{i=1}^{m-1} t_i^{\nu_i} \tilde{\mathcal{Z}} + t_m^{\nu_m - 1} \tilde{\mathcal{Z}} \Big/ \sum_{i=1}^m t_i^{\nu_i} \tilde{\mathcal{Z}} \rightarrow \tilde{\mathcal{Z}} \Big/ \sum_{i=1}^m t_i^{\nu_i} \tilde{\mathcal{Z}} \rightarrow \tilde{\mathcal{Z}} \Big/ \sum_{i=1}^{m-1} t_i^{\nu_i} \tilde{\mathcal{Z}} + t_m^{\nu_m - 1} \tilde{\mathcal{Z}} \rightarrow 0$$
ers
$$R^1(\pi_c)_* \Big(\tilde{\mathcal{Z}} \Big/ \sum_{i=1}^m t_i^{\nu_i} \tilde{\mathcal{Z}} \Big) = 0.$$

$$Q \in \mathbf{D}$$

infe

$$R^{1}(\pi_{c})_{*}\left(\tilde{\mathcal{Z}}/\sum_{i=1}^{m}t_{i}^{\nu_{i}}\tilde{\mathcal{Z}}
ight)=0.$$
 Q.E.D

References

- [1] A. Andreotti and E. Vesentini: On the pseudo-rigidity of Stein manifolds. Ann. Scuola Norm. Sup. Pisa, 16(3), 213-223 (1962).
- [2] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann., 146, 331-368 (1962).
- [3] K. Kodaira and D. C. Spencer: On deformations of complex analytic structures. I. Ann. of Math., 67(2), 328-401 (1958).
- [4] K. Knorr: Noch ein Theorem der analytischen Garbentheorie (to appear).
- [5] K. Knorr und Michael Schneider: Relativexzeptionelle analytische Mengen (to appear).