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1o Introduction. Inthe previous note [3; II], we have introduced
the hen-spectra o operators. I T is an operator acting on a Hilbert
space ) with the spectrum a(T), then the hen-spectrum (T) is the com-
plement of the unbounded component of a(T) where M is the comple-
ment of a set M in the complex plane. Clearly, the hen-spectrum is a
compact set in the plane with the connected complement, and we have
proved in [3 II, Proposition 2].
1 ) a(T) (T) co a(T) W(T),

where co M is the convex hull of M, M the closure o M, and W(T) is
the numerical range o T.

In the previous note [3 II], we are concerned with growth condi-
tions" An operator T is called to satisfy the condition (G) (resp. (Hx))
if

1(2)
dist (, X)

for e X and X=a(T) (resp. X-- (T)). By (2), we have, T e (G1) implies
T e (H), and T e (H) implies that T is a convexoid in the sense of
Hlmos [5], i.e. W(T)-co a(T).

In the present note, we shall concern with spectral sets introduced
by yon Neumann" A closed set S in the complex plane called a spectral
set for an operator T
( 3 ) a(T)S
and
( 4 )
where f is a rational function with poles off S and

zS

cL [6] or details. If S is a spectral set or T and ScS’, then S’ is also
a spectral set for T. A fundamental theorem or spectral set is

Theorem A (von Neumann). The (closed) unit disk D is a spec-
tral set for every contraction.

The following theorem, also due to von Neumann, is a direct con-
sequence of Theorem A"

Theorem B. {; [--l>=fl} is a spectral set for T if and only if
II(T-R)-II 1/.
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The following theorem obtained in [6] is a principal tool in the
below"

Theorem C (Lebow). If S is a compact set which does not sepa-
rate the plane, then S is a spectral set for an operator T if and only if
(4’) liP(T)
for any polynomial p.

In the below, we shall study a class of non-normal operators defin-
ed by spectral sets. We shall introduce a new class of operators and
discuss some properties in 2. Following after [4], we shall construct
an example in 3. Inclusion relations of classes of non-normal opera-
tors are discussed in 4. In 5-6, we shall give two characteriza-
tions of new class in terms of dilations and polynomials of operators.
In 7, we make two remarks.

2. Definition. By means of spectral sets, Hildebrandt [4] intro-
duced two classes of non-normal operators" T is a spectroid (resp.
numeroid, in the sense of [3 I]) if a(T) (resp. (T)) is a spectral set for
T. In this direction, we introduce

Definition 1. An operator T is a hen-spectroid if (T) is a spectral
set for T.

We shall list up some elementary properties of hen-spectroids"
Proposition 2. A spectroid is a hen-spectroid; and a hen-

spectroid is a numeroid.
Proof. By the definitions, (2) implies the proposition.
Proposition . A hen-spectroid satisfies (H).
Proof. If e (T) and

(T){
for fl0, then we have

by Theorem B. Hence we have T e (H).
Proposition 4. T is a hen-spectroid if and only if (4’) is satisfied

for any polynomial p for S=d(T).
Proof. If T is a hen-spectroid, then we have (4’) for S--(T).

Conversely, if (4’) is satisfied for any polynomial p, then (T) is a spec-
tral set for T by Theorem C since a(T) is connected.

Proposition 5. A compact hen-spectroid is normal.
Proof. If T is compact, then a(T) is at most countable, so that

a(T) is connected, and we have a(T) a(T). Hence a(T) is a spectral
set for T by the hypothesis, or T is a spectroid. It is well-known that
a compact spectroid is normal.

:. Construction. In this section, we shall give a method to con-
struct a hen-spectroid"



126 M. FuJH [Vol. 49,

Theorem 6. For an arbitrary operator A with a compact spec-
tral set S, there is a normal operator B with S--a(B) such that S is a
spectral set for T=AB.

Proof. I f is a rational unction with poles off S, then we have

max (I f(n)II, f(B)II) <= f I1
since the spectrum is a spectral set or a normal operator. Hence S is
a spectral set T.

Corollary 7. For any A, there is a normal operator B such that
T=AB is a hen-spectroid.

Proof. By Theorem 6, S-(A) is a spectral set or T. Since
a(T)=a(A) [Ja(B)-S, we have a(T)S, and (T) is a spectral set or T,
or T is a hen-spectroid.

Remark. In the previous note [3;I, Theorem 3], we have con-
structed a numeroid by a similar method, assuming S W(B). How-
ever, this is insufficient" We need to assume that S[J W(A)W(B),
so that we can prove that W(T)--co {W(A), W(B)}--W(B) is a spectral
set or T.

4. Application. We shall prove
Theorem 8. There is a hen-spectroid which does not satisfy (G).
Proof. Let

and B be a simple bilateral shift. Then we have

where C is the unit circle and D the unit disk. By Theorem A, D is a
spectral set for A.
and a(T)- {0} D C.

so that or

Hence, by Corollary 7, T=AB is a hen-spectroid
We have - -2)

we have

It T e (G), then we have

which is a contradiction.
Corollary 9.

-2/4/1>2.

T+- dist ,
The class of all spectroids is properly contained in
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the class of all hen-spectroids.
Proof. If not, then every hen-spectroid T is a spectroid, so that

T e (G1), which is impossible by Theorem 8.
Theorem 10. There is a numeroid which is not a hen-spectroid.
Proof. We have proved in [3; II, Prop. 10], there is a numeroid

which is not (H). Hence Proposition 3 implies the theorem.
Remark. The converse o Theorem 8 is also valid: There is

T e (G) which is not a hen-spectroid. I] not, every T e (G) is a nor-
maloid, which is impossible.

5. Dilation. For an operator T acting on , if there is normal
operator N acting on including which satisfies
( 5 Tnx=PNnx (n-- 0, 1, 2, ...)
or x e , where P is the projection o] onto , then N is called a
strong normal dilation of T. The following theorem is basic in our
study, cL [5], [8] and [9]:

Theorem D (Berger-Foias-Lebow). If S is a (compact) spectral
set for T, then there is a strong normal diation N of T with
( 6 (N)S
where S is the boundary of S.

For numeroids, the ]ollowing characterization is proved in [8]:
Theorem E (Schreiber). An operator T is a numeroid if and only if

there is a strong normal dilation N of T with
( 7 ) W(N) W(T).

Schreiber’s theorem suggests us the ollowing characterizatins of
spectroids and hen-spectroids"

Theorem 11. T is a hen-spectroid if and only if there is a strong
normal dilation N of T with

( 8 O(N) c o(T).
Proof. If T is a hen-spectroid, then we have a strong normal dila-

tion N with (8) by Theorem D taking S=(T).
Conversely, if N and T satisfy the hypothesis of Theorem 11, then

we have

or any polynomial p since we have p(T)x--Pp(N)x or x e by (5).
Hence T is a hen-spectroid by Proposition 4.

Theorem 12. T is a spectroid if and only if there is a strong
normal dilation N of T with

( 9 ) a(N) c a(T).
Proof. If T is a spectroid, then we have a strong n.ormal dilation

N of T with (9) by Theorem E taking S--a(T).
The converse is essentially same with the proof of Schreiber’s

theorem [8]. Using the Neumann expansion, we have



128 M. FUJII [Vol. 49,

((T--)-x y)----- ((N--)-xly)
for any a(T) and x, y e . Hence we have

(f(T)x y)----(f(N)x y)
or every rational function f with poles off a(T). Therefore we have

so that a(T) is a spectral set for T, or T is a spectroid.
6. Transposition. Following after [5], we shall call an operator

T is a normaloid if IIT r(T) where r(T) is the spectral radius of T.
In [1], the following characterization of spectroids is proved"

Theorem (Berberian). T is a spectroid if and only if f(T) is a
normaloid whenever f is a rational function with poles off a(T).

Inspired by Berberian’s theorem, we shall give here a characteriza-
tion of hen-spectroids"

Theorem 13. T is a hen-spectroid if and only if p(T) is a nor-
maloid for any polynomial p.

Proof. At first, we state
(10) r(p(T))=[Ipil,<T)=llpII;(T),

for every polynomial p; because
r(p(T)) sup ([p[; e a(p(T))}

=sup {IZ; Z e p(a(T))}
sup (p() e a(T)}

by the spectral mapping theorem and

by the maximum modulus principle.
If p(T) is a normaloid for every p, then (10) gives us

P(T) r(p(T)) p [[;
which tells Us that T is a hen-spectroid by Proposition 4.

Conversely, if T is a hen-spectroid, then we have

Hence we have I[p(T)[[r(p(T)), so that p(T) is a normaloid for every
polynomial p.

Remark. Theorem 13 is a generalization of a theorem of Williams
[10]" T is a numeroid if p(T) is a normaloid or any polynomial p. A
similar proo or Theorem 13 is also obtained by R. Nakamoto in his
private letter.

A similar proof or Theorem 13 given us that T is a hen-spectroid
if and only i (4’) is satisfied for every polynomial p and S=a(T).

7. Appendix. In the previous note [3" II, 4], we have defined
a class of operators" T e if
(11) 0(T) co a(T).
We have shown that the intersection of and the class of all convexoids
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is

_
introduced by Luecke [7]. We have also proved, in [3; II,

Theorem 3], T e : if and only if
(12) W(T)--(T).

In this section, we shall give two remarks on hen-spectroids with
and hyponormality. By a theorem of [4] and (12), we have
Proposition 14. If T e is a numeroid, hen T is a hen-spec$roid.
Proposition 15. There is a hyponormal opera$or which is no$ a

hen-specroid.
Proof. Clancey’s example in [2] presents us a hyponormal opera-

tor T which is not a spectroid. However, his example satisfies that
a(T) is connected. Hence a(T)--(T) and T is not a hen-spectroid.

Finally, we shall prove the following characterization of a class of
operators"

Proposition 16. T e ; is a hen-spec$foid if and only if here is a
srong normal dilation N of T wih W(N)--(T).

Proof. If T is a hen-spectroid, then T is a numeroid, so that there
is a strong normal dilation N of T with W(N)-W(T) by Schreiber’s
theorem. Since T e , we have W(N) W(T) (T) by (12).

Conversely, if W(N)-(T) by a strong normal dilation N of T,
then T is a hen-spectroid by Theorem 11. Moreover, we have

(T) W(T) ff W(N) (T),
so that T satisfies (12) and T e .
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