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24. On a Generalization of Adasch’s Theorem
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(Comm. by Kinjir5 KUNUGI, M.J.A., Feb. 12, 1973)

N. Adasch [1] generalized KSthe’s theorem [4] on the equicontinuous
set of linear continuous mappings from (F)-space into (LF)-space. In
this paper,-we shall go a step further.

In the first part, we introduce the concept of the countably
boundedness which generalizes the theorem ([1](10)b)c)). Next, we
generalize the theorem ([1](12)a)b)) in the second part and the
theorems ([1](10)c)b)), ([1](12)b)a)) in the third part.

Throughout this paper, terminology and notation are the same as
in [3], if nothing otherwise is mentioned.

1. Definition 1o Let E be a locally convex separative topological
linear space and A a subset of it. We say that A is countably bounded
if, for any sequence (Xn)Of elements of A, there exists an absolutely
convex bounded set B of E such that (Xn}EB. When E is countably
bounded, E is said to be countably bounded space.

We have easily next seven propositions.

Proposition 1. Any bounded subset of a locally convex separative
topological linear space is countably bounded.

Proposition 2. Any finite union or sum of countably bounded
subsets and any subset of a countably bounded set is countably bounded.
Especially, any subspace of a countably bounded space is a countably
bounded space for the induced topology.

Proposition 3. Any finite product of countably bounded spaces
is countably bounded. A countably bounded space E is countably
bounded for the topology such that E has the same dual

Proposition 4. If a locally convex separative topological linear
space E has the first countability property of Maclcey [5], [Proposition
12 of this paper], then E is countably bounded. Especially, every
metrizable locally convex topological linear space is countably bounded.

Proposition 5. Let E be a locally convex separative topological
linear space and B an absolutely convex bounded set of E. Then EB is
a countably bounded space for the topology of EB, and the induced
topology.

Proposition 6. Let E be the locally convex separative topological
linear space which is the union of a sequence of linear subspaces
Then the following assertions are equivalent"
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(a) For each countably bounded subset A of E, there exists the
positive integer k such that A cE.

(b) For each bounded subset B of E, there exists the positive
integer k such that BE.

Proposition 7. Let E,F be locally convex separative topological
linear spaces, and H a set of linear mappings from E into F such that,
for each bounded set B of E, the set H(B)--(u(x)lueH, x e B} is
bounded in F. If A is a countably bounded set in E, the set H(A) is
countably bounded in F.

Let L(E, F) be the linear space of linear continuous mappings rom
E into F. Each equicontinuous set of L(E, F) satisfies the condition
of H in Proposition 7, so we have the following corollaries.

Corollary 1. Instead of the condition of H in Proposition 7, we
suppose that H is an equicontinuous set of L(E, F), then we have the
same conclusion. Especially, the linear continuous image of a countably
bounded set is countably bounded.

Corollary 2. The quotient space of a countably bounded space
and the linear continuous image of a countably bounded space are
countably bounded.

Proposition 8. Let E,F be locally convex separative topological
linear spaces and F be the union of a sequence of linear subspaces {F}.
Suppose that H is the set of linear mappings from E into F, defined in
Proposition 7. If, for each bounded set B of F, there exists the posi-
tive integer k such that BF, then, for each countably bounded set
A of E, there exists the positive integer k such that H(A)cF.

Proof. By Proposition 7, H(A) is countably bounded in F, so by
Proposition 6, we have the conclusion.

We have the following theorem as the corollary of Proposition 8
and this theorem is a generalization of Adasch’s -theorem ([1](10)b)c)).

Theorem 1. Let E be a countably bounded space, and F a locally
convex separative topological linear space which is the union of a
sequence of linear subspaces (F}. If, for each bounded set B of F,
there exists the positive integer k such that BcF, then, for each
equicontinuous set H of L(E,F), there exists the positive integer k
such that H(E) F.

Corollary 1. We suppose that locally convex separative topologi-
cal linear space E is the union of a sequence of linear proper subspaces

{E}. If, for each bounded set B of E, there exists the positive integer

k such that BcE, then E cannot be countably bounded.
Proof. We suppose that E is countably bounded. Of course, the

identity mapping i on E is a linear continuous mapping, so, by Theorem
1, there exists the positive integer k such that i(E)=EcE. This is
the contradiction.
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Corollary 2. (the space of infinitely differentiable functions
with compact support) is not countably bounded.

Proof. Because _q) is the union o the sequence of (F)-spaces {E},
each of which is a linear proper subspace o , and each bounded set
is in some E.

Corollary :. If a locally convex separative topological linear
space E is countably bounded and has a fundamental sequence of
bounded sets (that is, E has the second countability property of Mackey
[5]), then there exists a bounded barrel in E.

Proof. We can consider that E has a undamental sequence of
bounded sets {B} such that each B is an absolutely convex closed
bounded set. Then E is the union o the sequence o normed spaces

{E.} and or each bounded set B in E, there exists the positive integer

n such that BE. So, by Corollary 1, there exists the positive
integer k such that E==nB. Therefore B is a bounded barrel
in E.

Corollary 4. Let E be a locally convex separative topological

linear space. Then the following assertions are equivalent:

() The topology of E is the infimum of a sequence of topologies

of normed space.
(b) E is a countably bounded bornological space having a funda-

mental sequence of bounded sets.
Proof. (a)(b). As E is the linear continuous image o a

countably bounded space, E is countably bounded. On the other hand,
E is a bornological space having a undamental sequence of bounded

sets ([2] chap. III 2 exercice 21) b)).
(b)(a). From Corollary 3, there exists a bounded barrel in E.

Hence we have our assertion ([2] chap. III 2 exercice 21) b)).
2. Here we wish to generalize the theorem ([1](12)a)@b)).
Definition 2. Let E be a locally convex separative topological

linear space and A a subset o it. We say that A is countably bounded

in the sense of Mackey, i, or any sequence {B} o bounded subsets

contained in A, there exists an absolutely convex bounded set B such

that {B} E and each B is bounded in E.
Cleary, we have next five propositions from Definition 2.

Proposition 9. Any bounded set of a locally convex separative

topological linear space is countably bounded in the sense of Mackey.

Proposition 10. Any finite union or sum of sets having countably

boundedness in the sense of Mackey and any subset of a countably

bounded set in the sense of Mackey is countably bounded in the sense

of Mackey. Especially, any subspace of the space which is countably

bounded in the sense of Mackey, is countably bounded in the sense of
Mackey.
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Proposition 11. Any finite product of the spaces, each of which
is countably bounded in the sense of Mackey, is countably bounded in
the sense of Mackey. A space which is countably bounded in the sense

of Mackey, is countably bounded in the sense of Mackey for the topology
such that E has the same dual E’.

Proposition 12. Let E be a locally convex separative topological
linear space. The following statements are equivalent:

(a) E is countably bounded in the sense of Mackey.
(b) E has the first countability property of Mackey.

Proposition 1:3. If a set A is countably bounded in the sense of
Mackey, A is countably bounded.

Proposition 14. Let E, F be locally convex separative topological
linear spaces and F be the union of a sequence of locally convex
separative topological linear spaces {F}. Suppose that H is a set of
linear mappings from E into F such that, for each bounded set B of E,
the set H(B) is bounded in F. If, for each bounded set B of F, there
exists the positive integer k such that BF and B is bounded in F,
then, for each set A of E which is countably bounded in the sense of
Mackey, there exists the positive integer k such that H(A)F and,

for each bounded set B contained in A, H(B) is bounded in F.
Proof. We suppose that the statement were alse. Let

{nli-- 1, 2, } be the set o positive integers such that H(A)
then there exists the sequence {Bn, li=l, 2,...} o bounded sets con-
tained in A such that H(B)_F, or H(B,) is not bounded in F,. As
A is countably bounded in the sense o Mackey, there exists an
absolutely convex bounded set B such that {B,}E, and each B, is

bounded in E. The property o H implies that H(B) is bounded in F,
{H(Bn)}Fr(HfB) and each H(B) is bounded in Fr(()). On the other
hand, there is the positive integer n such that F(H(B))F and I(H(B))
is bounded in F. It ollows that {H(Bn,)}F and each H(B,) is

bounded in F. So there exists the positive integer k such that n--n,
and we have that H(B)F and H(B) is bounded in F. This is a

contradiction.
We have the ollowing theorem as the corollary o Proposition 14

and this theorem is a generalization of Adasch’s theorem ([1](12)a)@b)).
Theorem 2. Let E be a bornological locally convex separative

topological linear space having the first countability property of Mackey
and let F be a locally convex separative topological linear space which

is the union of a sequence of locally convex separative topological linear

spaces {F}. If, for each bounded set B of F, there exists the positive

integer k such that BF and B is bounded in F, then, for each
equicontinuous set H of L(E, F), there exists the positive integer k such
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that H(E)cF and H is an equicontinuous set of L(E,F).
Proof. Proposition 14 implies that there exists the positive

integer k such that H(E)F and, for each bounded set B of E, H(B)
is bounded in F. As E is bornological, H is an equicontinuous set of
L(E, F).

Corollary. A locally convex separative topological linear space E
is normable if and only if E is a bornological space having the first
and the second countability property of Mackey.

Proof. The necessity is trivial.
The sufficiency follows from Theorem 2 in the same way that

Corollary 3 of Theorem 1 follows from Theorem 1.
:. Finally, we generalize the theorems ([1](10) c)b)),

([1](12)b)@a)).
Propositon 15. Let E,F be locally convex separative topological

linear spaces and F be the union of a sequence of tinear subspaces {F}.
Suppose that H is the set of linear mappings from E into F such that,
for each bounded set B in E, H(B) is bounded in F. If, for each H
above defined, there exists the positive integer k such that H(E)F,
then, for each bounded set B of F, there exists the positive integer k
such that BF.

Proof. Let x’ be a non-zero continuous linear functional on E, B
be any bounded set of F. We define the linear continuous mapping

u rom E into F to make each element x of E correspond to the element
x’(x)b in F for the fixed element b in B. Let H=[ulb e B}. As F(B)
is bounded in F, for each absolutely convex neighbourhood V of 0 in
F, there exists the positive number such that VF(B). Let
U={xllx’(x)l<=l/}, then U is a neighbourhood o 0 in E, and, or each
b of B and eachxof U,u(x)=x’(x)be(1/2)F(B)V. So, Hisanequi-
continuous set of L(E, F) and H satisfies the condition of this proposi-
tion. It ollows that there exists the positive integer k such that
H(E)F. The other hand, H(E)DB, so BF.

We have the following theorem as the corollary of this proposition
and this theorem is a generalization o the theorem ([1](10)c)@b)).

Theorem :. Let ,F be locally convex separative topological
linear spaces and F be the union of a sequence of linear subspaces {F}.
If, for each equicontinuous set H of L(E, F), there exists the positive
integer k such that H(E)F, then, for each bounded set B in F, there
exists the positive integer k such that BF.

Proposition 15. Let E, F be locally convex separative topological

linear spaces and F be the union of a sequence of locally convex
separative topological linear spaces {F}. Suppose that H is the set

of linear mappings from E into F such that, for each bounded set B in
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E, H(B) is bounded in F. If, for each H above defined, there exists
the positive integer k such that H(E)F and, for each bounded set B
in E, H(B) is bounded in F, then, for each bounded set B in F, there
exists the positive integer k such that BF and B is bounded in F.

Proof. By the proo2 o Proposition 15, for each bounded set B in
F, an equicontinuous set H of L(E, F) such that BH(E), is defined.
By the assumption, there exists the positive integer k such that H(E)
F and, for each bounded set B’ in E, H(B’) is bounded in F. So
BF. Let a be an element of E such that x’(a)=l, then, 2or each
neighbourhood V of 0 in F, there exists the positive number 2 such
that

H(a)={x’(a)b b e B} V, i.e. BV.
It ollows that B is bounded in F.

We have the ollowing theorem as the corollary of this proposition
and this theorem is a generalization of the theorem ([1](12)b)a)).

Theorem 4. Let E,F be locally convex separative topological
linear spaces and F be the union of a sequence of locally convex
separative topological linear spaces {Fn}. If, for each equicontinuous
set H of L(E, F), there exists the positive integer k such that H(E)F
and H is an equicontinuous set of L(E, F), then, for each bounded set
B in F, there exists the positive integer k such that BF and B is
bounded in F.
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