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41. A Remark on a Sufficient Condition for Hypoellipticity

By Akira TsUTsSUMI
College of General Education, Osaka University

(Comm. by Kinjiré KUNUGI, M. J. A., March 12, 1973)

1. Introduction. Let P=P(x,D,)=3 ., <n @ (x)D: be a differ-
ential operator where x=(x,, ---,%,) is a point of a open subset 2 in
real n-space R}, a=(a,, - - -, ,) i3 a multi-index with its length |¢|=a,
+---+a, and Dj=(—19/ox)*---(—1id/0x,)*". For &c R" we denote

=8 1El= - F 8D, D =1+4E], P(2,8) =", <m @ (X)&* and
PGz, §)=D;(iD,)*P(w, &).

Simple and weak sufficient conditions for hypoellipticity are given
by L. Hérmander which include not only differential operators but also
pseudo-differential operators ([2] § 4 Theorem 4.2, p. 164). In this note
we shall give a slightly different sufficient condition for hypoellipticity
which is stated by using a basic weight function depending also on the
x-variable instead of (&> only. The usage such a basic weight function
is effective for study of asymptotic behavior of spectral function of
hypoelliptic differential operator which will appear in a forthcoming
paper.

We confine ourselves in case of differential operators but it seems
quite possible to extend it in case of pseudo-differential operators, be-
cause the proof of the main theorem depends on a construction of a
parametrix just along the arguments in [1] and [2]. I wish to thank
Mr. M. Nagase for his advice through discussion.

2. Theorem and outline of the proof. Theorem. Let P(z,¢&)
be written in the sum P(x, &)=p(x, &) +p,(x, &) where p,=p,x, &) and
0, =p,(x, &) satisfy the following conditions:

(2.1) The coefficients are in C=.

For any ze 2 and a and 8 there exist the constants C,,, ,>0, C,>0,
and A,>0 such that

(2.2) [P (@5 E) | L Co a5 | Do, E) 10112121

2.2 D5 (@, §) L Co e, [ Do, &) [Fme et +D+000EI+D for |§|1NA,,

where p and § are some constants depending only on P(x, D) and satis-
fying 0£6<pL1,

2.3) (Do, D Co [E™ 0<m'Lm,  for|§|NA,,

2.4 m'o<1,

and Cy,..5 C, and A, are bounded when x is in compact subset of 0.
Then the operator P(xz, D,) is hypoelliptic : u € 9'(Q) satisfying the equa-
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tion P(x, D u=f is in C=in any open subset of 2 where f is in C=.
The proof of the theorem is obtained from the following series of
lemmas. Let q,=q.(x, &) k=0,1, ... be defined inductively
(2.5) Dy qo=1
(2.6) Dy-q=—11- qk-l_Zl'a|l+<lk=k 1/a! P9.q,q, for [§|>A,.
Lemma 1. The q4, k=1,2, - - - have the following form:
Qe =1/py 235141412 [Tz (P2 [py) T4z (PGH /Do)
T3z @o(G 100 T1iZE a3y [90)
for || A,, where a, B, &, B,, - - -, &’ and B/ are multi-indices satisfy-
ing a,%0, 2=1,2, -+, %, a,%0, =1,2, ---, 7, |&/|>0, v=1,2, -+, &,
|’ |>0, ¢=1,2, -+, 7, B,50, p=1,2, ---, 7, B0, v=1,2, .-+, k, and
1B/1X0, ¢=1, =1,2, -.., z, and furthermore
[+ a2+ S [ e =k A+ el
| 2062 But 22z B4+ 2ZT B |+ e=F+ B,
and the summation moves over the number of factors: 2~2k+|a|+|B|.
Lemma 2. If P(x, &) satisfies (2.1) ~(2.4), then P*(x, &) correspond-
ing the adjoint operator P*(x, D,)=p¥(x, D,)+p¥(x, D,) satisfies them
too for p§(x, & and p¥(w, §).
Here we construct q, k=0,1,2, . - ., for P*(x, &) by applying (2.5)
and (2.6) and we shall use the same notation for ¢, in what follows.
Setting

S, =210 %

and
hy(2, ©=0:9x + 2720 2jajsi>n 1/ P9qy,
we have from (2.5) and (2.6)
1=P*(x, Dy +8) fx(, © +hy(, §).

For 2'c cf (relatively compact in ) we set A’=sup,.,- 4, and
choose a function ¥,(¢) € Cy(R?) which equals to 1 in a neighborhood of
the set {£e R?: |£|<A’}, and set §,=1—1,. Asis

1=9(8) + () =P*(@, Dy +8) f (2, O)V1(8) — ko (, E)¥1(E) +(8)

we have

@D p@=P*@ D)D" [ e wOry@, oo
§

—@D) [ 0Oy, D)+ PO,
§

where ¢(&) is the Fourier transform of ¢(x) € C5(2). For the first term
of (2.7) we have

Lemma 3. The distribution kernel Fy(x,y) of the distribution:
O(z,y) € Cy (2’ X R")—F y(9)=(2x)~" Iei<”">f (@, OV (8)

b(x, &dédz,
where &(x- &) denotes the Fourier transform with respect to the second
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variadles, is C* function in x and y off the diagonal ; zxy.
By taking « such that —m/(1—p|a)<—n holds, we have from

Lemma 1, (2.2), (2.2) and (2.3) that the integral of the right hand side
of

(& —Y)Fy(z, v) =) jew-v'»(—ne)«(fzv(x, Ev(8)ds

is absolutely convergent at x=cy, from which Lemma 8 is obtained.
For the second term of the right hand side of (2.7) we have
Lemma 4. The integral of the second term of the right hand side
of (2.7) is absolutely and wuniformly convergent in C<(Q'XR®) if
—m(p—0)N+r<—n. And when we set Hy(x,y) the kernel of the
integral, we have

f H (@, )e@)dy = @) " fem»@(h,v(w, E(E) -+ V() B(§)dE.

From the definition of iy(z, & and (2.2) the integral is estimated by

C lpo(x, $) I—(,n—d)N+6:
and by letting N large the exponent becomes negative, by which (2.3)
can be used.

By multiplying # a function in Cy(2) we may assume u € £'(2) and
hence the order of the distribution # is finite. Let f be in C~(w) where
 is a open subset 2, and V(x) € C3(2") be equal to 1 on w. Here we
set

g=v@)f, and h=Q1—(x))f.
From (2.7) and P(x, D,)u=g+h, we have for ¢ € Cy (o)

up)=@a) [ 9@ ([0 fu(e, 4,0 p@)d8) do

(], roF st piz)e@iy+ | as(, ey,

where the distribution « operates on - in Hy(-,y). The function Fy(x)
defined by its Fourier transform

T (@)= [0 Lu(@, @ 9@z,
is in C=(w) by (2.4) and hence we have

o | (Ie“”’“fzv(x, DN (O9@)dz) p(Eds
=j%(x)¢(x)dx.

Furthermore by applying Lemma 3 for the second term, and Lemma 4
for the third term of the right hand side of u(p), we can confirm u is
smooth of any order in w.

3. Example.
(1) The symbol py(x, &)=|x [§f«+[EF+1, @ >p>0=p/2, 1, v and ¢
are natural numbers), satisfies the conditions (2.2), (2.8) and (2.4) for
0=1/2u,6=1/2v and m'=20.
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(2) The symbol p(x, §) =&} + @+ x)(&;+E5) + &3+ &5 satisfies the condi-
tions (2.2), (2.3) and (2.4) for p=1/4, 6=1/6 and m'=2.
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