57. An Application of a Certain Argument about Isomorphisms of α-Saturated Structures

By Hiroyoshi TABATA

Nara Technical College

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1973)

Applying A. Robinson's proof of the Completeness Theorem, Y. Nakano [3] recently gave a proof of the theorem of Grätzer [2; p. 138, Theorem 6] on the existence of homomorphisms under certain conditions. But, in the theory of models, there is a well known argument about isomorphisms of α -saturated structures (cf. [1; Chap. 11]). As an application of this argument, we shall give a simplified proof of an extended version of the Grätzer's theorem.

We consider each ordinal number as coinciding with the set of smaller ordinal numbers. We use letters ξ, ζ, ρ to denote ordinal numbers and n, i, k to denote natural numbers. We regard cardinals as being identical with initial ordinals. If X is a set we denote its cardinal by \overline{X} .

Let ρ be an arbitrary ordinal number and let μ be a sequence of natural numbers with domain ρ ($\mu \in \omega^{\rho}$). By a relational structure of type μ we shall mean a sequence $\mathfrak{A} = \langle A, R_{\varepsilon}^{\mathfrak{A}} \rangle_{\varepsilon \in \rho}$ where A, the domain of \mathfrak{A} , is a non-empty set and $R_{\varepsilon}^{\mathfrak{A}}$ is a $\mu(\xi)$ -ary relation on A for each $\xi < \rho$. Throughout our discussion we shall assume that $\mu \in \omega^{\rho}$ is some fixed type, that all relational structures we mention are of this type, that L is the appropriate first order language for structures of this type and that for each ordinal ξ, L_{ε} is the language obtained from Lby adding the ξ -termed sequence of new and distinct constants $\langle c_{\zeta} : \zeta \in \xi \rangle$. For any relational structure $\mathfrak{A} = \langle A, R_{\varepsilon}^{\mathfrak{A}} \rangle_{\varepsilon \in \rho}$ and for any ξ -termed sequence $\vec{a} = \langle a_{\zeta} : \zeta \in \xi \rangle$ of elements of A, we use (\mathfrak{A}, \vec{a}) to denote the structure for L_{ε} obtained from \mathfrak{A} by interpreting each c_{ζ} by a_{ζ} .

Satisfaction of formulas of L_{ε} in a structure for L_{ε} is defined as usual. If θ is a formula whose free variables are among v_0, \dots, v_n and if θ holds in \mathfrak{A} with respect to the elements e_0, \dots, e_n of the domain of \mathfrak{A} , then we write $\mathfrak{A} \models \theta[e_0, \dots, e_n]$.

We use F(L) to designate the set of all formulas of L having at most the one variable v_0 free, and we use $F(L_{\xi})$ to designate the corresponding set of formulas of L_{ξ} .

Suppose Σ is a set of formulas from $F(L_{\varepsilon})$, \mathfrak{A} is a relational structure for L and $\vec{a} \in A^{\varepsilon}$. We say that Σ is simultaneously satisfiable in

 (\mathfrak{A}, \vec{a}) if there is some $e \in A$ such that for all $\theta \in \Sigma$, $(\mathfrak{A}, \vec{a}) \models \theta[e]$. Σ is said to be finitely satisfiable in (\mathfrak{A}, \vec{a}) if each finite subset of Σ is simultaneously satisfiable in (\mathfrak{A}, \vec{a}) .

Let α be some cardinal. A relational structure $\mathfrak{A} = \langle A, R_{\varepsilon}^{\alpha} \rangle_{\varepsilon \in \rho}$ is said to be α -saturated, if for each ordinal $\varepsilon < \alpha$, and any $\vec{a} \in A^{\varepsilon}$, a set of formulas which is finitely satisfiable in (\mathfrak{A}, \vec{a}) is itself simultaneously satisfiable in (\mathfrak{A}, \vec{a}) .

Let Γ be a set of formulas. We use $\{\exists, \land\}\Gamma$ to designate the set of all formulas that can be formed from the formulas in Γ using only the connective \land and quantifier \exists .

If \mathfrak{A} is a structure for L_{ε} , then we denote by Th \mathfrak{A} the set of all sentences of L_{ε} that are valid in \mathfrak{A} .

Theorem. Let $\mathfrak{A} = \langle A, R^{\mathfrak{A}}_{\mathfrak{c}} \rangle_{\mathfrak{c}\in\rho}$ be a relational structure, and let $\mathfrak{B} = \langle B, R^{\mathfrak{A}}_{\mathfrak{c}} \rangle_{\mathfrak{c}\in\rho}$ be an \overline{A} -saturated relational structure. \mathfrak{A} has a homomorphism (an embedding) into \mathfrak{B} if and only if every finite substructure of \mathfrak{A} has a homomorphism (an embedding) into \mathfrak{B} .

Proof. The "only if" part is obvious. To prove the "if" part, assume that every finite substructure of \mathfrak{A} has a homomorphism (an embedding) into \mathfrak{B} . We must show that there is a homomorphism (an embedding) from \mathfrak{A} into \mathfrak{B} . Let $\vec{a} = \langle a_{\xi} : \xi < \alpha \rangle$ be an enumeration of A without repetitions. We shall define, by recursion, a sequence $\vec{b} = \langle b_{\xi} : \xi < \alpha \rangle$ of elements of B such that for all $\xi < \alpha$,

$$\Gamma h\left(\mathfrak{A}, \vec{a} \mid \boldsymbol{\xi}\right) \cap \{\mathbf{J}, \wedge\} \Gamma_{\boldsymbol{\xi}} \subseteq \mathrm{Th}\left(\mathfrak{B}, \boldsymbol{b} \mid \boldsymbol{\xi}\right) \tag{1}$$

where Γ_{ε} is the set of all atomic formulas (all formulas that are either atomic formulas or negations of atomic formulas) of L_{ε} .

We must first show that this holds for $\xi = 0$, that is,

Th $\mathfrak{A} \cap \{\exists, \land\} \Gamma_{\mathfrak{g}} \subseteq Th \mathfrak{B}.$

Let θ be a sentence in Th $\mathfrak{A} \cap \{\exists, \land\} \Gamma_0$ and let $(\exists v_1) \cdots (\exists v_n)(\theta_1 \land \cdots \land \theta_k)$ be a prenex form of θ , where $\theta_i \in \Gamma_0$. Since θ is valid in \mathfrak{B} , there are elements e_1, \cdots, e_n of A such that $\mathfrak{A} \models \theta_i[e_1, \cdots, e_n]$ for $i=1, \cdots, k$. Let $C = \{e_1, \cdots, e_n\}$ and let $\mathfrak{C} = \mathfrak{A} \mid C$ (i.e., \mathfrak{C} is the only substructure of \mathfrak{A} with the domain C). Since \mathfrak{C} is a substructure of $\mathfrak{A}, \mathfrak{C} \models \theta_i[e_1, \cdots, e_n]$. By the assumption, \mathfrak{C} has a homomorphism (an embedding) f into \mathfrak{B} . Therefore $\mathfrak{B} \models \theta_i[f(e_1), \cdots, f(e_n)]$. Hence it is easily seen that $\theta \in \text{Th } \mathfrak{B}$.

Suppose $\xi < \alpha$ and for all $\zeta < \xi$ we have defined b_{ζ} so that (1) holds. Let $\Sigma = \text{Th}(\mathfrak{A}, \vec{a} | \xi + 1) \cap \{\exists, \land\} \Gamma_{\xi+1}$, and let Σ' be the set of those formulas of $F(L_{\xi})$ which are obtained from Σ by replacing all occurrences of the constant c_{ξ} by the variable v_0 . Suppose $\{\theta_1, \dots, \theta_k\}$ is a finite subset of Σ' . Then $(\mathfrak{A}, \vec{a} | \xi) \models \theta_1 \land \dots \land \theta_k [a_{\xi}]$ and so $(\mathfrak{A}, \vec{a} | \xi) \models (\exists v_0)(\theta_1 \land \dots \land \theta_k)$. Hence, by the hypothesis (1), $(\mathfrak{B}, \vec{b} | \xi) \models (\exists v_0)(\theta_1 \land \dots \land \theta_k)$, and so there is some $e \in B$ such that $(\mathfrak{B}, \vec{b} | \xi) \models \theta_i[e]$ for $i=1, \dots, k$. Therefore we have shown that Σ' is finitely satisfiable in $(\mathfrak{B}, \vec{b} | \xi)$. But \mathfrak{B} is α -saturated and therefore we may choose $b_{\xi} \in B$ so that for all $\theta \in \Sigma'$, $(\mathfrak{B}, b | \xi) \models \theta[b_{\xi}]$. It follows that

Th $(\mathfrak{A}, \vec{a} | \boldsymbol{\xi} + 1) \cap \{ \exists, \land \} \Gamma_{\boldsymbol{\xi}+1} \subseteq \text{Th} (\mathfrak{B}, \vec{b} | \boldsymbol{\xi} + 1).$

This completes the recursive definition of \vec{b} .

Clearly, by (1), Th $(\mathfrak{A}, \vec{a}) \cap \{\exists, \land\} \Gamma_{a} \subseteq \text{Th}(\mathfrak{B}, \vec{b})$. Therefore, if we define g by $g(a_{\xi}) = b_{\xi}, \xi < \alpha$, then we can easily see that g is a homomorphism (an embedding) of \mathfrak{A} into \mathfrak{B} . q.e.d.

The following is a version of the Grätzer's theorem (cf. [3]).

Corollary. Let \mathfrak{B} be a finite relational structure. A relational structure \mathfrak{A} has a homomorphism into \mathfrak{B} if and only if every finite substructure of \mathfrak{A} has a homomorphism into \mathfrak{B} .

Proof. By the simple fact that finite structure \mathfrak{B} is α -saturated for each cardinal α (cf. [1; p. 218]), the result follows immediately from the theorem.

References

- [1] J. L. Bell and A. B. Slomson: Models and Ultraproducts. North-Holland (1969).
- [2] G. Grätzer: Universal Algebra. Van Nostrand (1968).
- [3] Y. Nakano: An application of A. Robinson's proof of the completeness theorem. Proc. Japan Acad., 47, 929-931 (1971).